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Whole genome SNP-associated 
signatures of local adaptation in 
honeybees of the Iberian Peninsula
Dora Henriques1,2, Andreas Wallberg   3, Julio Chávez-Galarza1,4, J. Spencer Johnston5, 
Matthew T. Webster3 & M. Alice Pinto   1

The availability of powerful high-throughput genomic tools, combined with genome scans, has helped 
identifying genes and genetic changes responsible for environmental adaptation in many organisms, 
including the honeybee. Here, we resequenced 87 whole genomes of the honeybee native to Iberia 
and used conceptually different selection methods (Samβada, LFMM, PCAdapt, iHs) together with in 
sillico protein modelling to search for selection footprints along environmental gradients. We found 
670 outlier SNPs, most of which associated with precipitation, longitude and latitude. Over 88.7% 
SNPs laid outside exons and there was a significant enrichment in regions adjacent to exons and UTRs. 
Enrichment was also detected in exonic regions. Furthermore, in silico protein modelling suggests 
that several non-synonymous SNPs are likely direct targets of selection, as they lead to amino acid 
replacements in functionally important sites of proteins. We identified genomic signatures of local 
adaptation in 140 genes, many of which are putatively implicated in fitness-related functions such as 
reproduction, immunity, olfaction, lipid biosynthesis and circadian clock. Our genome scan suggests 
that local adaptation in the Iberian honeybee involves variations in regions that might alter patterns 
of gene expression and in protein-coding genes, which are promising candidates to underpin adaptive 
change in the honeybee.

In the current context of a global human-mediated environmental crisis, the long-standing goal of uncovering 
the genetic basis of adaptation has never been so important. Recent technological advances allow for major steps 
towards that goal. Increasingly powerful high-throughput sequencing and computational technologies, coupled 
with increasingly sophisticated analytical tools, have changed the scale of analysis from limited genomic regions 
and few loci to whole genomes, allowing thereby detection of signatures of selection at an unprecedented resolu-
tion and depth.

Most genome-wide analytical tools detect selection by searching for unusual patterns of genetic variation pos-
iting that population demographic history affects variation across all loci while natural selection operates at spe-
cific loci1–4. Known as outlier tests, selection footprints are sought by scanning genomes using a population-based 
differentiation measure such as FST

5,6 or by an individual-based approach centred on Bayesian factor models7. 
Another class of increasingly popular analytical tools, known as genetic-environment association (GEA) meth-
ods, identify selection by finding strong associations between genetic and environmental data8–12. By uncover-
ing loci that are directly or indirectly correlated with the environmental factors, GEA methods can potentially 
identify selective pressures driving local adaptation13–15. A drawback of both classes of tools is that demographic 
processes and complex spatial structuring may create patterns resembling selection, leading to false positives16–18. 
However, a recently developed approach controls for population structure using latent factors estimated consid-
ering the statistical model and the data simultaneously. This approach has been incorporated into some outlier 
tests (e. g. the Bayesian factor model of PCAdapt7) and GEA methods (e. g. latent factor mixed model, LFMM9).

Studies using whole-genome scans have employed these analytical tools to identify hundreds of regions under 
selection in many model and non-model organisms19–29. This study further contributes to the rapidly growing 
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list of organisms by helping uncover genetic pathways underlying local adaptation of one of the most diverse 
and evolutionarily complex honeybee subspecies, the Iberian honeybee (hereafter IHB), Apis mellifera iberiensis.

The honeybee (Apis mellifera L.) evolved into 31 currently recognized subspecies30–34, which have been 
grouped into four main evolutionary lineages: Northern and Western European, M; Southeastern European, C; 
African, A; and Middle Eastern, O30. In this wide range of diversity, the M-lineage IHB is one of the most intrigu-
ing subspecies, exhibiting complex patterns of clinal variation as have many other organisms that evolved in the 
Iberian glacial refuge (reviewed by Weiss and Ferrand35). Genetic surveys of the IHB have suggested that while 
evolutionarily neutral processes have played an important role in shaping the sharp northeastern-southwestern 
Iberian cline36–40, selection is a force that cannot be ignored41. Iberia possesses high physiographic complexity, 
with several large mountain ranges, and due to its geographical position is under the influence of both the North 
Atlantic and the Mediterranean seas. These features have shaped a diverse array of climates (including desert, 
Mediterranean, Alpine, and Atlantic) and plant communities with variable flowering peaks to which the IHB had 
to adapt.

A previous selection scan of the IHB using an array of 383 SNPs (single nucleotide polymorphisms) iden-
tified 34 putatively adaptive SNPs located in genes involved in vision, xenobiotic detoxification, and innate 
immune response41. However, the 383 SNPs were widely spaced, and given the unusually high recombination 
rate in honeybees42 genomic regions important in local adaptation have certainly been missed, as suggested 
by whole-genome studies of other subspecies33,43–47. In the present study, we employed a combination of out-
lier and GEA methods to identify genome-wide signatures of selection from 87 whole-genome sequences, 
thereby expanding the SNP-array scan of Chávez-Galarza, et al.41 by over 3 orders of magnitude (3367 fold). We 
approached local adaption in the IHB by addressing the following questions: Does adaptation arise from muta-
tions that change amino acids? Which genes are responsible for adaptation to different environments? Which 
environmental factors might act as selective pressures in IHBs? In answering these questions, major insights will 
be gained toward understanding the genetic pathways used by the IHB to adapt to the broad range of Iberian 
environments.

Results
A total of 1,289,449 SNPs were retained, after the filtering process and using a minor allele frequency (MAF) > 
0.05, for 87 resequenced IHBs sampled from across the Iberian range (Fig. 1). Of these, 670,738 SNPs were located 
in intergenic regions (120,301 in intergenic regions <2 Kb of exons, 37,058 in intergenic regions <1 Kb upstream 
of exons), 557,334 in introns (23,092 < 50 bp of exons), 18,841in UTRs (untranslated region), and 42,536 in exons 
(Supplementary Table S1). The average physical distance between SNPs was 170.262 bp varying between 1 bp and 
136,266 bp (Supplementary Fig. S1).

Population Structure.  Population structure and demographic history can create genomic patterns that 
mimic selection. Accordingly, population structure was analysed to prevent discovery of false positives16–18,48. 
The genetic structure was inferred from the 1,289,449 SNPs with sNMF and PCAdapt, which identified one and 
two optimal number of clusters (K), respectively (Supplementary Fig. S2). Incongruent optimal K values can be 
obtained by different methods49, especially in the presence of low levels of population differentiation50, which is 
the case of the IHB with a global FST = 0.021. Despite the optimal K = 1 obtained by sNMF, further partitioning of 

Figure 1.  Location of sampling sites. The samples were distributed across three transects in the Iberian 
Peninsula, represented by three different colours: Atlantic in red (AT; N = 31), Central in blue (CT; N = 33), and 
Mediterranean in green (MT, N = 23). Each dot represents a single colony and apiary. Sampling site codes (AT1 
to MT6) correspond to those reported by Chávez-Galarza, et al.41.
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the genome revealed a clinal pattern of variation, with the northern populations of the central and Mediterranean 
transects carrying an important genomic component assigned to the orange cluster (0.65 for K = 2, Fig. 2A). 
This component decreased gradually towards the south and is absent in most Atlantic populations. Greater K 
values (K ≥ 3) highlight the distinctiveness of the Atlantic populations. The clinal pattern of variation in the 
Mediterranean (MT) and central populations (CT) is captured by PC2, with the distinct Atlantic populations 
(AT) captured by the PC1 generated by PCAdapt fast (Fig. 2B). These genome-wide results confirm the Iberian 
cline captured by the 383 SNPs, and the claim that modern beekeeping has not disrupted the natural variation 
pattern in IHBs40.

Signatures of Local Adaptation.  Genetic-Environment Associations (GEA).  To identify potential selec-
tive pressures driving local adaptation in the IHB, the GEA methods Samβada and LFMM were employed in the 
genome scan. A total of 38,683,470 univariate models (1,289,449 SNPs × 2 alleles × 15 environmental varia-
bles) were processed by Samβada. Over 1,305 SNPs were identified as outliers (false discovery rate, FDR < 0.05; 
Supplementary Table S2). The most frequently associated environmental variables were longitude (long; 1,071 
models, 31%), precipitation in August (prec8; 758 models, 22%), May (prec5; 368 models, 11%), and January 
(prec1; 336 models, 10%). The 12 top-ranked models (Gscore >50) identified 6 SNPs, which were located in genes 
GB40077 (1 SNP), GB54460 (1 SNP), GB45499 (2 SNPs) and GB48105 (2 SNP). Of the six SNPs, three SNPs were 
non-synonymous, with the strongest (Gscore = 59.0) tagging GB40077 and the other two tagging GB45499 (see 
further details in the protein modelling section), two were located in introns in the immediate vicinity of exons 
(between 85 and 225 bp), and one was in a synonymous position (Supplementary Table S2). The SNPs marking 
GB40077, GB54460 and GB45499 were associated with longitude whereas the two SNPs located in gene GB48105 
were associated with precipitation in January.

A total of 1,416 (FDR < 0.05), 360 (FDR < 0.02), and 220 SNPs (FDR < 0.01) were identified by the 
LFMM method (Supplementary Table S3 and Fig. S3). The strongest 21 SNPs (defined by a cut-off level of −
log10(q-value) > 4) were located in introns (11 in GB46620, 3 in GB43005, 1 in GB4810, 1 in GB54460), 1 in 
UTRs (GB48105), and 3 in exons (1 non-synonymous in GB46620, 1 non-synonymous in GB40077, 1 synon-
ymous in GB48105). A single SNP mapped to an intergenic region, although close to a gene (207 bp upstream 
of GB46621). Most SNPs were associated with latitude (11 in GB46620, 3 in GB43005, 1 in GB46621) and/or 
precipitation in May (12 in GB46620, 1 in GB46621). The variables precipitation in January and longitude were 
associated with only 3 (GB48105) and 2 (1 in GB40077, 1 in GB54460) SNPs, respectively.

A total of 598 SNPs overlapped between Samβada and LFMM (Supplementary Tables S4 and S5). These 
SNPs mapped to 126 genes and 99 intergenic regions. The variables precipitation in August and precipitation in 
May showed the greatest number of associated SNPs (227 and 152, respectively; Table 1, Fig. 3, Supplementary 
Tables S2 and S3), although longitude (113), latitude (102) and precipitation in January (101) were also predom-
inant variables (Table 1). The variable latitude shared 52% of the SNPs with precipitation in August whereas 
longitude shared 35.40% of the SNPs with precipitation in January and 14.16% with cloud cover in April (cld4) 
(Supplementary Table S6).

There was an enrichment of SNPs detected by both GEA methods in exons (P-value < 2.20 × 10−16), UTRs 
(P-value = 8.8 × 10−4), introns <50 bp of exons (P-value = 8.01 × 10−5), and intergenic regions <1 Kb upstream 
of exons (P-value = 2.278 × 10−5, χ2 test).

PCAdapt fast.  For further cross-validating selection and reducing detection of spurious signals, we combined 
the GEA methods with the differentiation-based PCAdapt fast. A total of 285 outlier SNPs were identified by 
PCAdapt (FDR < 0.05; Supplementary Fig. S4 and Tables S5 and S7), of which 266 (93.3%) were cross-detected 
by the GEA methods (Fig. 4). From the 285 SNPs, 84 were located in 36 intergenic regions and 201 in 61 genes. 
The genes containing the highest number of SNPs were GB49881 (40), GB49882 (27), and GB46620 (18).

Figure 2.  Population structure of A. m. iberiensis. (A) Structure estimated by sNMF from K = 2 to K = 5. 
The 16 sampling sites are arranged from north (AT1, CT1, MT1) to south (AT8, CT9, MT6) in each of the 
three transects. Plots represent each of the 87 individuals by a vertical bar partitioned into coloured segments 
(clusters) corresponding to membership proportions (Y-axis: 0-1) in each cluster. Vertical black lines separate 
the 16 sampling sites. (B) Score plot displaying the latent factors of each individual honeybee in PC1 and PC2 
for K = 2. Each colour represents a different transect.
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Putative targets of selection identified by PCAdapt fast were enriched in exons (P-value < 2.20 × 10−16, χ2 
test), in intergenic regions <1 Kb upstream (P-value < 2.20 × 10−16, χ2 test) of exons, and in introns <50 bp of 
exons (P-value = 3.1 × 10−8, χ2 test).

The Strongest Candidate SNPs.  A total of 670 SNPs were detected by at least two selection methods, 
11.3% were located in exons (41 non-synonymous and 35 synonymous SNPs), 3.0% in UTRs (20 SNPs), 46.1% 
in introns (309 SNPs, of which 28 were <50 bp of exons), 18.7% in intergenic regions adjacent to (2-2,000 bp; 
125 SNPs, of which 42 were <1 Kb upstream) exons and 21% distant from (2,023–188,208 bp; 140 SNPs) exons.

The 670 SNPs exhibited |iHs| (integrated haplotype score) values ranging from 0.006 to 7.2 (Supplementary 
Tables S4 and S5). A total of 150 SNPs were strong candidates for recent ongoing selection as they showed a |iHs| 
> 2 (Supplementary Table S5). The two top-ranked SNPs displayed a |iHs| > 7, standing out by a remarkably 
strong selection signature. One of these two is located 834 bp upstream of the undescribed gene GB54883 and 
the other is a longitude-associated non-synonymous SNP located in GB55263 (see further details in the protein 
modelling section).

The great majority (405 SNPs, 60.4%) of the 670 SNPs were located in exons, introns and UTRs of 140 genes. 
Of these, 8 genes carried >10 SNPs (Supplementary Tables S4 and S5), mostly associated with precipitation in 
May and precipitation in August (Table 2). The aforementioned GB49881, GB49882, GB46620, and GB43005 
are amongst the 8 genes and are highlighted by possessing 29, 19, 18 and 13 SNPs, respectively. Four genes were 
tagged by non-synonymous SNPs with GB48703 and GB48709 harbouring the most (Table 2).

Figure 3.  LFMM Manhattan plots. The plots represent the genome-wide distribution of significance values 
−log10 (q-value) obtained by LFMM for the environmental variables with the strongest associations. (A) 
precipitation in August: 351 SNPs, (B) precipitation in May: 596 SNPs, (C) longitude: 113 SNPs, (D) latitude: 
385 SNPs. The red lines indicate FDR values of 0.05, 0.02 and 0.01.

Environmental variables LFMM Samβada Overlapping

Precipitation August 124 152 227

Precipitation May 444 32 152

Longitude 0 423 113

Latitude 283 56 102

Precipitation January 63 67 101

Insolation April 18 55 50

Cloud cover April 165 8 32

Temperature min. January 58 27 18

Cloud cover July 24 4 10

Relative humidity January 27 21 6

Temperature min. June 1 16 6

Land cover 26 3 6

Relative humidity June 19 20 4

Relative humidity March 111 2 0

Altitude 0 3 0

Table 1.  Environmental variables and number of associated SNPs identified exclusively by LFMM or Samβada 
and simultaneously by both methods.
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The highest stringency cross-validation based on the three methods (Samβada, LFMM and PCAdapt fast) 
identified 194 overlapping SNPs (Fig. 4 and Supplementary Tables S4 and S5). These were located in 39 genes, 
including 6 of the 8 genes containing >10 SNPs. From the 194 SNPs, 68 displayed elevated |iHs| values (>2.0) 
representing 14 genes and 11 intergenic regions (Table 3). The genes with the highest number of SNPs and the 
uppermost |iHs| values were GB49881 (28 SNPs, |iHs| > 3.0) and GB49882 (6 SNPs, |iHs| > 5.4). Interestingly, 
these genes share transcript sequence associated with the SHAW protein, for which there are five alternative var-
iants, and are only 1,864 bp apart. This remarkably short intergenic region contained 15 SNPs detected by at least 
two methods with |iHs| > 1.7 (Supplementary Table S5).

There was an enrichment of the 670 SNPs in exons (P-value < 2.20 × 10−16), UTRs (P-value = 0.0018), introns 
<50 bp of exons (P-value = 6.393 × 10−6), and intergenic regions <1 Kb upstream of exons (P-value = 2.73 × 10−7, 
χ2 test).

Protein Modelling.  To understand how SNPs causing amino acid changes could interfere with protein func-
tion, the 3D structure and stability were predicted for the different variants. A total of 41 non-synonymous SNPs 
were detected by at least two selection methods. The 41 SNPs were located in 29 genes. Protein prediction was 
available for only 11 of the 29 genes and 4 genes contained SNPs outside the 3D model (Supplementary Table S8). 
The remaining 7 genes (GB40077, GB45499, GB47279, GB48707, GB49875, GB51396, GB55263) were trans-
lated into a total of 37 protein variants (Supplementary Table S9). The gene GB49875 was the least diverse, with 
3 variants, and gene GB40077 was the most diverse, with 9 variants (Fig. 5, Supplementary Fig. S5, Table S9). 
Most of these protein variants exhibited lower energy minimization than the reference (14 variants) and values 

Figure 4.  Overlapping SNPs identified by the three genome-scan methods. Numbers in the intersection regions 
represent overlapping SNPs among two or three methods. Numbers in parentheses show the corresponding 
genomic regions harbouring the SNPs.

A. mellifera gene # SNPs SNPs distribution across genomic regions Environmental variables

GB49881 29 29 Intronic Long, prec1, cld4

GB48698 20 1 Exonic (syn), 16 intronic, 3 UTR Prec8

GB49882 19 5 Exonic (syn), 14 intronic Long, cld4

GB46620 18 2 Exonic (non-syn), 16 intronic Lat, prec1, prec5, prec8, ins4

GB48709 13 3 Exonic (non-syn), 1 exonic (syn), 9 intronic Lat, prec5, prec8

GB43005 13 13 Intronic Lat, prec1, prec5, tmin1, tmin6, ins4

GB48703 12 3 Exonic (non-syn), 1 exonic (syn), 6 intronic, 
2 UTR Prec5, prec8

GB48699 11 1 Exonic (non-syn), 10 intronic Prec8

Table 2.  Candidate genes containing more than 10 SNPs detected concurrently by at least two selection 
methods. Genes marked in bold carry SNPs that were cross-detected by iHS and/or PCAdapt. The correlated 
environmental variables are longitude (long); latitude (lat); cloud cover in April (cld4); insolation in April 
(ins4); precipitation in January (prec1), May (prec5) and August (prec8); minimum temperature in January 
(tmin1) and (tmin6).
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of Gibbs-free energy (ΔΔG) > 0 (15 variants), with the highest ΔΔG values displayed by variants C and E of 
gene GB47279 (3.94 Kcal/mol and 2.29 Kcal/mol, respectively), indicating that the variants are less stable than 
the reference protein.

The non-synonymous SNPs tagging GB47279, GB48707, GB49875 and GB51396 produced amino acid 
changes outside of sites described as functionally important (see 3D structures in Supplementary Fig. S5). In 
contrast, GB40077, GB55263, and GB45499 contained non-synonymous SNPs that led to replacement of amino 
acids within or in the close vicinity of a functionally important site of the protein (Fig. 5). GB40077 and GB55263 
encode proteins involved in lipid biosynthesis whereas GB45499 encodes a transport protein (Supplementary 
Table S4).

The single SNP detected inside the 3D prediction of GB40077 led to replacement of a proline (non-polar with 
restricted flexibility) by a serine (polar with low-flexibility) in position 363 (Fig. 5; Supplementary Table S9). 
GB55263 was also tagged by a single but strong SNP (|iHs| = 7.05; Supplementary Table S5), which causes a 
substitution of a threonine (polar with low flexibility) by an isoleucine (non-polar with moderate flexibility) at 
position 215 (Fig. 5; Supplementary Table S9). GB45499 was tagged by two non-synonymous SNPs. Of the two 
amino acid substitutions in this gene, only amino acid 74 was located inside the 3D prediction (Fig. 5). At position 
74, the SNP leads to replacement of histidine (positive with moderate flexibility) by tyrosine (polar with moderate 
flexibility; Supplementary Table S9).

The geographical patterns exhibited by the variants of the amino acid under selection are shown in Fig. 5 and 
Supplementary Fig. S5. While variation of genes GB45499, GB55263, GB47279, GB48707, and GB51396 is ori-
ented along a northeastern-southwestern axis, GB40077 and GB49875 display an eastern-western pattern with 
one the forms of the amino acid mostly confined to the Atlantic side of Iberia.

Gene Ontology and Annotation.  The power of the gene ontology (GO) analysis for uncovering the bio-
logical significance of candidate regions identified in whole-genome selection scans depends on the number 
of annotated genes available for the focal organism51. Of the 140 candidate genes identified here by at least two 
selection methods, only 109 were retrieved from the DAVID database. Hence, the GO analysis should be inter-
preted with caution as it may reflect a biased representation of candidate genes and miss biological functions. The 
109 genes showed a significant enrichment (P-value < 0.05, before Bonferroni correction) for 6 functional terms 
(Supplementary Table S10), of which 4 formed one cluster (enrichment score = 2.58). The 4 terms were related 
with membrane of which only one (integral component of membrane) was significant after the Bonferroni correc-
tion. The remaining 2 functional terms (olfactory learning and lucose/ribitol dehydrogenase) were not clustered. 
While olfactory learning only included 2 genes, the fold enrichment was remarkably high (84.79).

Gene # SNPs Genomic position
Environmental 
variables Putative function

GB49881 28 Intronic Long, prec1, cld4 Undescribed

GB49882 6 Intronic Cld4 Sleep

GB49899 4 Intronic Long, prec1 Pdz (post-synaptic density) domain

GB48696 4 Non-syn, syn, intergenic (<1235 bp) Prec5, prec8 Inter-male aggressive behavior

GB48694 3 Intronic Prec5 Undescribed

GB48105 2 Intronic (8 bp), UTR Long, prec1 Neurogenesis

GB49874 2 Intergenic (<2060 bp) Long, prec1 Undescribed

GB48702 2 Intronic (61 bp), intergenic (1, 111 bp) Lat, prec5, prec8 Organism reproduction

GB51286 2 Intergenic (<17, 754 bp) Long, prec1 Undescribed

GB48701 2 Intergenic (<804 bp) Lat, prec5, prec8 Undescribed

GB48697 2 Syn, Intergenic (678 bp) Lat, prec5, prec8 Undescribed

GB51427 1 Intergenic (952 pb) Long Response to fungus

GB49878 1 Intergenic (495 bp) Long, prec1 Response to DDT

GB47226 1 Syn Long, prec8 Undescribed

GB49879 1 Intronic (204 bp) Long, prec1 Sleep

GB47281 1 Syn Long, prec8 Ovarian nurse cell to oocyte 
transport;

GB47279 1 Non-syn Long, prec8 Response to insecticide

GB48706 1 Intergenic (30 bp) Prec5 Axoneme assembly

GB51401 1 Intergenic (180 bp) Long ATP-dependent RNA helicase 
activity

GB51396 1 Non-syn Long Oxidoreductase activity,

GB51422 1 Syn Long Undescribed

GB44109 1 Intergenic (2182 bp) Prec1 Oxidation-reduction process

Table 3.  Genomic information, and associated environmental variables, of candidate genes cross-detected by 
Samβada, LFMM, PCAdapt and |iHs| > 2. Putative functions were summarized from FLYBASE. The correlated 
environmental variables are longitude (long); cloud cover in April (cld4); precipitation in January (prec1), May 
(prec5) and August (prec8).
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The membrane cluster comprised 29 genes of which 16 could be grouped into three classes of proteins, 
including cell-surface receptors (7), transport (7), and cell-adhesion (1; Supplementary Tables S10 and S11). 
The cell-surface receptor genes (7 detected in GO analysis and GB45612 and GB48704) belong to four fami-
lies, including the G-protein-coupled receptor family (GB40666, GB49166 GB48703 and its paralogue GB48704, 
GB49166 and GB51611), the ion-channel-coupled receptor (GB48639), the enzyme-coupled receptor (GB43446), 
and the CD36/scavenger receptor (GB49363). The transport proteins were represented by potassium channels 
(GB49879 and its paralogue GB49882) and transporters (GB45499, GB50262, GB49320, GB46597, GB53142, 
GB54678). Finally, the cell-adhesion proteins were represented by GB44159 and GB43719, being the latter unde-
tected by the GO analysis (Supplementary Tables S4 and S10).

Although unrepresented in the GO enrichment analysis, many other genes are good candidates for local 
adaptation in the IHB as they are putatively implicated in the same biological function. These functions 
include reproduction with 7 genes, immunity with 11 genes, regulation of transcription with 7 genes, lipid stor-
age and biosynthesis with 7 genes, olfaction with 8 genes, vision with 3 genes, and detoxification with 6 genes 
(Supplementary Table S11).

Discussion
In this study we employed conceptually different analytical tools to disentangle signatures of selection from 
genome-wide geospatial variation in the IHB. By scanning 87 whole genomes, we were able to refine inferences 
previously made from a limited number of pre-ascertained biased SNPs41 and provide further insights into the 
molecular basis of local adaption in the IHB. In addition to providing unbiased information about the type of 
genes and biological processes putatively underlying local adaptation, we have never been so close to finding 
associated causal mutations.

The majority of the 41 non-synonymous outlier SNPs are likely causal mutations, especially those laying in 
genes GB40077, GB45499 and GB55263, as they could be linked to amino acid positions important for protein 
functioning52–55. On the other hand, it is possible that many outlier SNPs are hitchhiked with the actual genetic 
target of the selective event as 80% of the outlier SNPs were <5 Kb apart. Yet, the hypothesis that many linked 
multiple causal mutations have a functional role cannot be ruled out56–58.

A great proportion (88.7%) of cross-detected outlier SNPs are located in non-coding DNA, as opposed to the 
11.3% exonic SNPs. A similar disproportionate fraction of non-coding to coding SNPs has been identified by 
whole-genome scans in other organisms, including humans59, fishes56, and fruit flies23,60. This finding together 
with the significant enrichment of (i) outlier SNPs laying in <1 Kb upstream from the transcription start site of 
42 genes, where the promoter is expected to be located, (ii) intronic regions in the immediate vicinity of exons 
(<50 bp), and (iii) UTRs suggest that regulatory sequences are an important source of adaptive change in the IHB. 
Further identification of causal mutations is a challenging endeavour that will require more accurate and com-
prehensive annotations of the honeybee genome, and especially annotation of the non-coding regulatory DNA, 
along with evidence from biochemical and functional assays.

Support for selection is provided by functional annotations of candidate genes that can be directly related to 
colony fitness and it is particularly compelling when multiple candidate genes are implicated in the same biolog-
ical function. While the GO enrichment analysis only detected 6 significant terms (4 related with membrane), 
functional annotations indicate that many fitness-related functions are represented by multiple genes (e. g. as 

Figure 5.  Predicted protein structures. The three genes harbour non-synonymous candidate SNPs, detected by 
three genome-wide methods, located nearby important places in the protein. The structures were predicted by 
Pymol considering the BeeBase reference amino acid sequences. The grey spheres represent the position and 
altered amino acids. The coloured spheres represent places with a known and important function in the protein. 
The maps depict the geographical patterns of the amino acids under selection.
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reproduction with 7 genes or immunity with 11 genes). Other fitness-related biological functions were high-
lighted as they displayed strong selection signals. These include olfaction, circadian clock, and lipids biosynthesis 
and storage. Many of the candidate genes identified for the IHB were also detected by whole-genome selection 
scans for other honeybee subspecies43,44,47 (Supplementary Table S4), suggesting that they are adaptively impor-
tant across diverse environments.

The GO analysis identified a cluster of 29 candidate genes encoding for membrane proteins in the IHB. The 
importance of membrane proteins in adaptation to new environments is evidenced by their rapid evolution com-
pared with cytosolic proteins61. In this study, three candidate genes are highlighted in the group of membrane 
transport proteins. Gene GB45499 is one of strongest candidates for selection as it carries a mutation leading 
to an amino acid change in a site of the protein located in the transmembrane region and involved in transport 
activity53. The replaced amino acid is located in the alpha-helix and, together with two other amino acids, it is 
important to maintain the open pathway from the intracellular space53. Genes GB49879 and GB49882 are par-
alogous encoding voltage-gated K+ channels, which are putatively implicated in the circadian clock (see below). 
GB49879 was detected by all selection methods and exhibits a |iHS| = 2.19, indicative of strong signals of ongoing 
selection62. GB49882 is tagged by 19 SNPs, of which 5 are exonic. In addition to membrane transport protein, the 
selection scan identified three candidate genes in the group of membrane receptors all implicated in olfaction.

The adaptive relevance of olfaction is revealed by the significant enrichment of the GO term olfactory learning 
and identification of 8 candidate genes. GB48703 and GB48691 are amongst the most striking candidates deserv-
ing further investigation. GB48703 encodes an olfactory membrane receptor and carries 12 outlier SNPs, of which 
3 are non-synonymous. GB48691 is implicated in olfactory learning and carries 9 outlier SNPs, of which one is 
non-synonymous. Unfortunately, protein prediction was not available for these genes hampering inferences on 
effects of the non-synonymous mutations in protein functioning. Colony fitness relies largely on olfactory per-
ception. Olfaction is implicated in the learning process, which is crucial for the improvement of resources’ acqui-
sition, as well as in a wide array of behaviours, including detection of possible dangers, recognition of potential 
mates, and social interactions63,64. Olfaction has also been shown to play a major role in the detection of brood 
cells infested by Varroa destructor65, an invasive mite that has been challenging honeybee health at unprecedented 
levels.

The honeybee relies on a circadian clock to synchronize foraging behaviour and reproductive swarming with 
the maximum daily and seasonal availability of food resources66,67. The importance of circadian rhythmicity in 
local adaption of IHBs is suggested by four candidate genes putatively operating in two functional components 
of the circadian clock: the oscillator and the output pathways. The core component “oscillator” is represented by 
GB52077. Its putative orthologue in Drosophila encodes for the transcription factor Period (Per). The honeybee 
amPer is an essential element of circadian rhythmicity, and its product is involved in a negative transcription/
translational auto-regulatory feedback loop68. The development of strong circadian rhythms in honeybee forag-
ers has been shown to be associated with changes in brain Per expression67. The component “output pathways” 
is represented by the striking candidates GB49879, GB49881 and GB49882. Genes GB49881 and GB49882 share 
transcript sequence associated with the SHAW voltage-gated K+ channel protein. GB49882 and GB49879 are par-
alogous encoding for SHAW and SHAW-like proteins, respectively. In Drosophila, the SHAW potassium channels 
regulate the intrinsic excitability in all neurons, being therefore important for output rhythms of the circadian 
clock69. The four clock genes were mostly marked by intronic outlier SNPs, suggesting that gene regulation is an 
important molecular mechanism to meet functional demands of circadian rhythmicity.

Seven lipid-related candidate genes mostly implicated in lipids biosynthesis and storage were detected in the 
IHB, being GB55263 and GB40077 amongst the top-ranked candidates possibly playing a central role in IHB 
adaptation. The non-synonymous SNPs mapped to these genes are likely causal mutations as they lead to replace-
ment of amino acids located in functionally important sites of the proteins. The mutation in GB55263 leads to an 
amino acid replacement in a canonical catalytic triad54. The mutation in GB40077 leads to an amino acid replace-
ment in a divergent loop52, which is important for mediating the protein-protein interaction or is part of the ATP 
binding site55. The Drosophila ortholog of GB40077 is implicated in lipid homeostasis70 and has been linked to 
the circadian clock71,72.

Precipitation in August, May and January are the variables most frequently and strongly associated with SNPs. 
While precipitation may act as a selective pressure by interfering with foraging, winter mortality, behaviour in the 
nest, and mating flights73,74, whether it is a direct cause of selection is unclear. It may very well be that precipita-
tion operates indirectly by determining availability of pollen and nectar sources across space and time, which will 
not only influence foraging and colony build up but also reproduction. Due to the highly contrasting climates (e.g. 
average annual precipitation is 1336.3 mm in the northwest and 284.6 mm in the southeast), plant communities 
(wild plants or crops) and blooming seasons are very heterogeneous across Iberia75. This could favour evolution 
of locally adapted populations to food resources. An interesting example of such adaptation is provided by the 
existence of an ecotype of A. m. mellifera (the other M-lineage subspecies in Europe) that has an annual brood 
cycle fine-tuned with the phenology of an abundant floral source in the Landes region in France76,77.

Precipitation in August, May, and January covary with temperature, insolation, cloud cover, and precipitation 
in the other months. Multicollinearity may lead to incorrectly identifying a variable as causal when the true selec-
tive pressure is a correlated variable. However, it is also possible that selection is driven by composite environmen-
tal cues. For example, the mating behaviour of honeybee queens is influenced by a combination of temperature, 
wind, and cloud cover73,74.

Longitude and latitude showed a large number of associations (113 and 102, respectively). While longitude 
and latitude do not act directly on organisms, they serve as composite variables representing multiple environ-
mental factors, any one or a combination of which could be exerting parallel selective forces. Latitude has been 
found to be associated with circadian clock genes in Drosophila78–81 and humans82,83, and now in honeybees. 
Clock genes are tagged by SNPs forming latitudinal and longitudinal gradients in Iberia. This finding suggests 
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that circadian rhythmicity is involved in local adaptation in IHBs by matching important behaviours, such as 
feeding and reproduction, with the diverse daily and seasonal environmental oscillations of Iberia.

Using both genetic and environmental data, we identified candidate genes putatively under climate-driven 
adaptation. This information is particularly important in the context of rapid global climate change, helping us to 
understand the mechanisms employed by organisms to adapt to varying environmental conditions.

Methods
Sampling.  A total of 87 haploid A. m. iberiensis males were collected in 2010 from 16 sampling sites distrib-
uted across three north-south transects: one along the Atlantic coast (AT: N = 31), one along the centre (CT: 
N = 33), and another along the Mediterranean coast (MT: N = 23; see Chávez-Galarza, et al.41 for further sam-
pling details). The sites cover a wide variety of climates ranging from the semi-arid in the southeastern part of 
Iberia to oceanic in the northwestern part (Fig. 1). Each of the 87 individuals represents a single colony and 
apiary.

Environmental Variables.  Geographical coordinates, recorded for each apiary using a global positioning 
system (GPS), were used to obtain seven environmental variables from publicly available databases (WorldClim, 
Climatic Research Unit, OPENEI): precipitation (prec), minimum temperature (tmin), mean temperature 
(tmean), maximum temperature (tmax), cloud cover (cld), relative humidity (rh), and insolation (ins). These 
variables were integrated into a geographic information system (ArcGIS 9.3 from ESRI) to extract yearly, seasonal 
and monthly data. Arabic numerals appended to each environmental variable designate the month for which the 
variable was obtained; for example, prec5 refers to precipitation in May. In addition to climate, land cover was 
described for each apiary by calculating the percentage of level 3 land cover classes84 within a 3 km radius circular 
area (for further details, see Chávez-Galarza, et al.41).

To prevent potential problems caused by non-independency, environmental variables were first organized into 
orthogonal vectors by performing a principal component analysis (PCA) using the ade4 package85. The strong 
correlation between many of the environmental variables in each vector means that they share a substantial 
amount of information and the relative importance of each variable is difficult to assess. Accordingly, variables 
that were correlated at |r| > 0.886 were removed from the data set. From an initial set of 123 environmental var-
iables, 13 uncorrelated variables together with longitude (long) and latitude (lat), which are proxies for climatic 
diversity, were retained for further analysis (Supplementary Tables S12 and S13 and Fig. S6). Each retained vari-
able is representative of a group of highly correlated variables, as listed in the Supplementary Table S13. The two 
largest groups comprise 33 variables; one of them is precipitation in May, which represents a wide array of varia-
bles, including precipitation, temperature, cloud and insolation; the other group is minimum temperature in June, 
which only represents temperature. Latitude is correlated with 27 variables, most of which represent insolation 
(ins), but also spring and summer precipitation (Supplementary Table S13).

Whole-Genome Sequencing and Filtering.  Whole genome sequencing (WGS) was performed 
using the Illumina HiSeq 2500 platform, which produced a mean coverage of 11X, ranging from 3X to 23X 
(Supplementary Table S14). Sequencing libraries were generated using Illumina TruSeqTM Sample Preparation 
kits. The 2 × 150 paired end sequence reads were mapped against the reference honeybee genome Amel_4.5 using 
the Burrows-Wheeler Aligner (BWA)87.

To improve the read mapping quality, PCR duplicates were identified and marked using Picard (http://broa-
dinstitute.github.io/picard/) and realignment around indels was performed to correct inconsistently mapped 
reads using the Genome Analysis Toolkit (GATK)88. To facilitate parallelization, the reads were split per chro-
mosome using SAMtools (http://samtools.sourceforge.net/) and the readgroups information was modified with 
Picard. Bayesian population-based SNP calling was implemented using FreeBayes89 across the 87 samples. To 
reduce poor mapping and spurious heterozygous positions, SNPs were removed that (1) had more than two 
alleles, (2) showed a quality score <50, (3) were present in less than 61 samples (70%), and (4) exhibited very 
high (>3000) or very low (<87) read depth (Supplementary Table S15). Haploid male data were intentionally 
misspecified to be diploid in the FreeBayes SNP calling process. Positions that showed more than 10 individuals 
as heterozygous were discarded, as they were unlikely to represent true SNPs. Missing genotypes were imputed 
by IMPUTE290. SNPs showing a minor allele frequency (MAF) <0.05 were removed from the data set using 
PLINK91.

Genomic Information.  Annotation information was obtained for all SNPs, including physical position, 
strand orientation and SNP functional state (non-synonymous, synonymous, intron or exon UTR, or intergenic 
regions), using the reference genome Amel_4.5, the Official Gene Set 3.2 (BEEBASE), and the Entrez Gene of 
NCBI. To have a complete functional annotation of each candidate gene, putative Gene Ontology classifications 
were obtained based on homology to Drosophila melanogaster using FLYBASE. The sequence alignments spanned 
at least 50 peptides with an e-score of 0.5 to assign orthologs. Approximately 7,103 D. melanogaster genes were 
linked to honeybee orthologs using these criteria. DAVID v.8.0 (the Database for Annotation, Visualization and 
Integrated Discovery) was accessed to determine if candidate genes were enriched for a specific functional anno-
tation92. Genes were considered as candidates for selection if they were tagged by one or more SNP outliers laying 
in exons, introns, or UTRs.

Population Structure.  Population structure was inferred from two different approaches: PCAdapt fast7,93 
and sNMF94. PCAdapt fast infers population structure using latent factors or scores. The approach sNMF is based 
on sparse non-negative matrix factorization to estimate the genetic ancestry components for each individual94. 

http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://samtools.sourceforge.net/
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Ten runs were performed in sNMF with alpha = 8 for each K value (1 to 10). Cross-entropy was used to guide 
the choice of the number of ancestral populations. To summarize and visualize the sNMF outputs, Q-plots were 
post-processed online with CLUMPAK95. The results from the PCAdapt fast and sNMF were used to create latent 
factors in models (see the section below for further details).

Searches for Signatures of Local Adaptation.  The whole genomes of the 87 IHBs were scanned for 
selection signals using three conceptually different methods (Samβada, LFMM and PCAdapt) and two data sets (a 
genomic data set and a combined genomic and environmental data set). The outlier SNPs detected by at least two 
methods were further examined using the haplotype-based method iHS and protein modelling for a secondary 
validation. Implementation of conceptually diverse approaches allows identification of potential false positives; 
by cross-validating outlier SNPs there is stronger evidence for selection96,97. These SNPs are the most promising 
candidates for biochemical and functional follow up studies.

The significance levels of Samβada, LFMM and PCAdapt were assessed using the false discovery rate (FDR) 
procedure98,99. To apply the FDR, the observed P-values should be uniformly distributed100. When this assump-
tion was not met, we applied the empirical null-hypothesis technique to recalibrate the distribution100. Only SNPs 
with an FDR < 0.05 were considered as outliers.

Genetic-Environment Association Methods.  Two GEA methods were employed to search for signa-
tures of local adaptation. One implements mixed models (LFMM) and the other a logistic regression model 
(Samβada). LFMM uses an MCMC algorithm for regression analysis that models random effects, such as popula-
tion history and isolation-by-distance, as unobserved (latent) factors101. This approach has proven to be efficient 
in screening genomes for signatures of local adaptation, performing well in cases of weak selection, complex hier-
archical structure and polygenic selection13,97,102–104. The program was run using 50,000 iterations and a burn-in of 
25,000. Based on the ancestry estimates previously obtained with sNMF94 and PCAdapt7, two latent factors were 
assumed. Since LFMM uses a stochastic algorithm, five runs with different seeds were performed. To increase the 
power of the LFMM test, the median z-score and adjustment of P-value were calculated.

The other GEA method Samβada is a spatial approach that uses univariate logistic regression models to iden-
tify locus-environment associations and at the same time measures spatial autocorrelation12,15. Samβada was run 
for each of the 15 environmental variables. The analysis included global and local autocorrelation using a weight-
ing factor based on the 25 nearest neighbours. The P-values were calculated from the Gscore.

Frequency-Based Method – PCAdapt fast.  The frequency-based PCAdapt fast approach7,93 implements 
a genome scan to detect genes involved in local adaptation by taking into consideration population structure. 
PCAdapt fast infers population structure using latent factors or scores, and searches for loci that are atypically 
related to population structure measured by factor analysis (h). To calculate the best K, PCAdapt fast was run 
with K = 10. Given that the best K was 2, as determined by eigenvalues, the software was run for the second time 
to infer the loci under selection for K = 2. The latent factors, which describe population structure, were plotted in 
the first two PCA components (PC1 and PC2).

Haplotype-Based Method – iHS.  The integrated haplotype score method, iHS, measures the strength of 
evidence for selection acting at or near a given SNP, tracking the decay of haplotype homozygosity for ancestral and 
derived haplotypes extending from a tested core62,105. To determine the SNP variants state (ancestral or derived), 
we performed a pairwise alignment between Apis mellifera (v4.5106) and Apis cerana reference genomes (v1.0107) 
using the default settings of SATSUMA108 whole-genome synteny package. Subsequently, the |iHS| values were 
estimated for candidate SNPs detected by at least two of the three previous methods using the Selscan package105 
with default parameters: –max-extend 1,000,000 (maximum EHH extension in bp), –max-gap 200,000 (maximum 
gap allowed between two SNPs in bp), –cutoff 0.05 (EHH decay cutoff). The script NORM, provided by Selscan, 
was implemented to frequency-normalize the output using the default parameter–bins 100 (number of frequency 
bins) over all chromosomes. Values of |iHS| > 2 are indicative of strong signals of recent positive selection62.

In Silico Analysis of 3D Protein Structure.  Structures of related proteins were searched for on Phyre2109 
and the SWISS-MODEL servers110. The five best matches were aligned and compared with a reference protein 
using MEGA7111; the structure with the best similarity and coverage was downloaded from the RCSB Protein 
Data Bank. The 3D structures of reference proteins and variants were modelled using SWISS-MODEL. FoldX112 
and the 3Drefine113 servers were used to refine the 3D structures. Protein stability of each variant was predicted 
using the Gibbs-free energy (ΔΔG) calculated with the FoldX software. The minimum energy required for stable 
structure was estimated using GROMOS96 implemented in Swiss Pdb-viewer software114. Root-Median-Square 
Deviations (RMSD) between the reference protein and each variant were estimated using TM-score115. The 3D 
predicted protein structures were visualized in Pymol 0.99 (PyMOL Molecular Graphics System).

Data accessibility.  Sequence data of A. m. iberiensis would be deposited at the ENA (www.ebi.ac.uk/ena) 
after the manuscript is accepted for publication.
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