Examinando por Autor "Guzmán Escuredo, Frank Lino"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Transcriptional analyses of two soybean cultivars under salt stress(Springer Nature, 2020-03-29) Cadavid, Isabel Cristina; Guzmán Escuredo, Frank Lino; De Olivera Busatto, Luisa; De Almeida, Rita M.C; Margis, RogerioSoybean is an economically important plant, and its production is affected in soils with high salinity levels. It is important to understand the adaptive mechanisms through which plants overcome this kind of stress and to identify potential genes for improving abiotic stress tolerance. RNA-Seq data of two Glycine max cultivars, a drought-sensitive (C08) and a tolerant (Conquista), subjected to different periods of salt stress were analyzed. The transcript expression profile was obtained using a transcriptogram approach, comparing both cultivars and different times of treatment. After 4 h of salt stress, Conquista cultivar had 1400 differentially expressed genes, 647 induced and 753 repressed. Comparative expression revealed that 719 genes share the same pattern of induction or repression between both cultivars. Among them, 393 genes were up- and 326 down-regulated. Salt stress also modified the expression of 54 isoforms of miRNAs in Conquista, by the maturation of 39 different pre-miRNAs. The predicted targets for 12 of those mature miRNAs also have matches with 15 differentially expressed genes from our analyses. We found genes involved in important pathways related to stress adaptation. Genes from both ABA and BR signaling pathways were modulated, with possible crosstalk between them, and with a likely post-transcriptional regulation by miRNAs. Genes related to ethylene biosynthesis, DNA repair, and plastid translation process were those that could be regulated by miRNA.Ítem Transcriptomics analysis of Psidium cattleyanum Sabine (Myrtaceae) unveil potential genes involved in fruit pigmentation(Sociedade Brasileira de Genética, 2020-04-27) Vetö, Nicole M.; Guzmán Escuredo, Frank Lino; Kulcheski, Franceli R.; Segatto, Ana Lúcia A.; Lacerda, María Eduarda G.; Margis, Rogerio; Turchetto Zolet, Andreia CarinaPsidium cattleyanum Sabine is an Atlantic Forest native species that presents some populations with red fruits and others with yellow fruits. This variation in fruit pigmentation in this species is an intriguing character that could be related to species evolution but still needs to be further explored. Our goal was to provide genomic information for these morphotypes to understand the molecular mechanisms of differences in fruit colour in this species. In this study, we performed a comparative transcriptome analysis of red and yellow morphotypes of P. cattleyanum, considering two stages of fruit ripening. The transcriptomic analysis performed encompassing leaves, unripe and ripe fruits, in triplicate for each morphotype. The transcriptome consensus from each morphotype showed 301,058 and 298,310 contigs from plants with yellow and red fruits, respectively. The differential expression revealed important genes that were involved in anthocyanins biosynthesis, such as the anthocyanidin synthase (ANS) and UDP-glucose:flavonoid-o-glucosyltransferase (UFGT) that were differentially regulated during fruit ripening. This study reveals stimulating data for the understanding of the pathways and mechanisms involved in the maturation and colouring of P. cattleyanum fruits and suggests that the ANS and UFGT genes are key factors involved in the synthase and pigmentation accumulation in red fruits.