Examinando por Materia "Agricultura de precisión"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru(MDPI, 2024-08-20) Goigochea Pinchi, Diego; Justino Pinedo, Maikol; Vega Herrera, Sergio Sebastian; Sanchez Ojanasta, Martín; Lobato Galvez, Roiser Honorio; Santillan Gonzales, Manuel Dante; Ganoza Roncal, Jorge Juan; Ore Aquino, Zoila Luz; Agurto Piñarreta, Alex IvánRice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with imaging sensors and geolocation technology, enable precise crop monitoring and management, enhancing yield and efficiency. However, Peru lacks sufficient experience with the application of these technologies, making them somewhat unfamiliar in the context of modern agriculture. In this study, we conducted experiments involving four distinct rice varieties (n = 24) at various stages of growth to predict yield using vegetation indices (VIs). A total of nine VIs (NDVI, GNDVI, ReCL, CIgreen, MCARI, SAVI, CVI, LCI, and EVI) were assessed across four dates: 88, 103, 116, and 130 days after sowing (DAS). Pearson correlation analysis, principal component analysis (PCA), and multiple linear regression were used to build prediction models. The results showed a general prediction model (including all the varieties) with the best performance at 130 days after sowing (DAS) using NDVI, EVI, and SAVI, with a coefficient of determination (adjusted-R2 = 0.43). The prediction models by variety showed the best performance for Esperanza at 88 DAS (adjusted-R2 = 0.94) using EVI as the vegetation index. The other varieties showed their best performance using different indices at different times: Capirona (LCI and CIgreen, 130 DAS, adjusted-R2 = 0.62); Conquista Certificada (MCARI, 116 DAS, R2 = 0.52); and Conquista Registrada (CVI and LCI, 116 DAS, adjusted-R2 = 0.79). These results provide critical information for optimizing rice crop management and support the use of unmanned aerial vehicles (UAVs) to inform timely decision making and mitigate yield losses in Peruvian agriculture.Ítem Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru(MDPI, 2023-05-19) Saravia Navarro, David; Valqui Valqui, Lamberto; Salazar Coronal, Wilian; Quille Mamani, Javier Alvaro; Barboza Castillo, Elgar; Porras Jorge, Zenaida Rossana; Injante Silva, Pedro Hugo; Arbizu Berrocal, Carlos IrvinIn Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.Ítem Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru(MDPI, 2022-10-26) Saravia Navarro, David; Salazar Coronel, Wilian; Valqui Valqui, Lamberto; Quille Mamani, Javier Alvaro; Porras Jorge, Zenaida Rossana; Corredor Arizapana, Flor Anita; Barboza Castillo, Elgar; Vásquez Pérez, Héctor Vladimir; Casas Diaz, Andrés V.; Arbizu Berrocal, Carlos IrvinEarly assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.