Examinando por Materia "Bioactive compounds"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Bioactive Compounds of Camu-Camu (Myrciaria dubia (Kunth) McVaugh)(Hosakatte Niranjana Murthy, 2019-10-24) Castro Gómez, Juan Carlos; Maddox, J. Dylan; Cobos Ruiz, Marianela; Paredes, Jae D.; Marapara del Aguila, Jorge Luis; Braga, Janeth; Imán Correa, Sixto Alfredo; Rodríguez, Hicler N.; Castro, Carlos G.Camu-camu is a shrub, native to the Amazon that thrives in areas where flooding is frequent. Genetically, the plant is characterized by a diploid genome and moderate genetic diversity. Several parts of the plant are used in traditional folk medicine to treat a variety of acute and chronic diseases. For over 50 years, the exceptionally high vitamin C content of camu-camu has attracted worldwide attention that continues today because of the recent discovery of several health-promoting phytochemicals with corroborated biological activities (e.g., antioxidant, anti-obesity, antidiabetic). All of these beneficial attributes are well supported by in vitro and in vivo studies as well as human clinical trials. The metabolic precursors of these phytochemicals are synthesized in key metabolic pathways (i.e., the shikimate pathway, the mevalonate pathway). Of these metabolic pathways, we show details for the biosynthesis of betulinic acid, trans-resveratrol, and syringic acid. In conclusion, camu-camu is an exceptional plant for its ability to produce and accumulate significant amounts of a variety of health-promoting phytochemicals. Although several metabolic pathways responsible for the biosynthesis of these phytochemicals have been reconstructed based on fruit and seedling transcriptomes, detailed knowledge of the vast majority of metabolic pathways and their molecular regulatory mechanisms is lacking. Consequently, we must increase our knowledge of the metabolic processes using multi-omic approaches so that we can acquire the skills necessary to develop genetically improved varieties of camu-camu and implement biotechnological applications for the production of these bioactive phytochemicals.Ítem Linking Grain Mineral Content to Pest and Disease Resistance, Agro-Morphological Traits, and Bioactive Compounds in Peruvian Coffee Germplasm(MDPI, 2025-12-24) Choque Incaluque, Ester Maryeta; Cueva Carhuatanta, César Aldair; Carreraa Rojo, Ronald Pio; Maravi Loyola, Jazmín Yurema; Hermoza Gutiérrez, Marián; Cántaro Segura, Hector Baroni; Fernández Huaytalla, Elizabeth; Gutiérrez Reynoso, Dina Lidna; Quispe Jacobo, Fredy Enrique; Ccapa Ramírez, Karina BeatrizMineral composition modulates plant health, agro-morphological attributes, and functional quality in coffee, yet large-scale evaluations remain limited. In 150 Coffea arabica L. accessions, we quantified grain minerals (Ca, K, Mg, Na, P, Zn, Cu, Fe, Mn); resistance to coffee leaf miner (CLM), coffee berry borer (CBB), and coffee leaf rust (CLR); agro-morphological traits; bioactive compounds (phenolics, flavonoids, chlorogenic acid, trigonelline, caffeine); and antioxidant capacity (ABTS, DPPH, FRAP). Mn and Zn were associated with greater resistance to CBB and CLM, whereas P and Ca related with lower susceptibility to CLR; a P–Zn antagonism emerged as a critical nutritional axis. Phosphorus was linked to larger size and higher 100-bean mass; Ca and Mg to greater fruit number and fruit mass per plant; and Fe to improved filling and higher 100-bean mass in parchment coffee. For bioactive compounds, P and K were positively associated with total phenolics, total flavonoids, caffeine, and ABTS/FRAP antioxidant activity, while trigonelline and chlorogenic acid correlated positively with the micronutrients Zn, Cu, and Fe. Cluster analysis resolved groups associated with resistance, Zn/Fe biofortification, productivity, and functional quality. PER1002287, PER1002216, PER1002207, and PER1002197 emerged as promising accessions balancing plant health, yield, and phytochemical quality. Overall, grain mineral composition is linked to plant health, productivity, and functional quality in coffee, providing a foundation for precision nutrient management and breeding programs aimed at resilient and high–value-added coffee.
