Examinando por Materia "Multispectral imaging"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield(2025-09-26) Goigochea Pinchi, Diego; Vega Herrera, Sergio Sebastian; Torres Chavez, Edson Esmith; Archentti Reategui, Fernando; Barrera Torres, Ciceron; Dominguez Yap, Percy Luis; Ysuiza Perez, Alfredo; Perez Tello, Monica; Rios Rios, Raúl; Santillan Gonzáles, Manuel Dante; Ganoza Roncal, Jorge Juan; Ruiz Reyes, Jose Guillermo; Agurto Piñarreta, Alex IvanRice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria.Ítem Yield prediction of four bean (Phaseolus vulgaris) cultivars using vegetation indices based on multispectral images from UAV in an arid zone of Peru(MDPI, 2023-05-19) Saravia Navarro, David; Valqui Valqui, Lamberto; Salazar Coronal, Wilian; Quille Mamani, Javier Alvaro; Barboza Castillo, Elgar; Porras Jorge, Zenaida Rossana; Injante Silva, Pedro Hugo; Arbizu Berrocal, Carlos IrvinIn Peru, common bean varieties adapt very well to arid zones, and it is essential to strengthen their evaluations accurately during their phenological stage by using remote sensors and UAV. However, this technology has not been widely adopted in the Peruvian agricultural system, causing a lack of information and precision data on this crop. Here, we predicted the yield of four beans cultivars by using multispectral images, vegetation indices (VIs) and multiple linear correlations (with 11 VIs) in 13 different periods of their phenological development. The multispectral images were analyzed with two methods: (1) a mask of only the crop canopy with supervised classification constructed with QGIS software; and (2) the grids corresponding to each plot (n = 48) without classification. The prediction models can be estimated with higher accuracy when bean plants reached maximum canopy cover (vegetative and reproductive stages), obtaining higher R2 for the c2000 cultivar (0.942) with the CIG, PCB, DVI, EVI and TVI indices with method 2. Similarly, with five VIs, the camanejo cultivar showed the highest R2 for both methods 1 and 2 (0.89 and 0.837) in the reproductive stage. The models better predicted the yield in the phenological stages V3–V4 and R6–R8 for all bean cultivars. This work demonstrated the utility of UAV tools and the use of multispectral images to predict yield before harvest under the Peruvian arid ecosystem.
