Examinando por Materia "Pseudomonas"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Effect of co-inoculation with growth-promoting bacteria and arbuscular Mycorrhizae on growth of Persea americana seedlings infected with Phytophthora cinnamomi(MDPI, 2024-04-02) Solórzano Acosta, Richard Andi; Toro, Marcia; Zúñiga Dávila, DorisAvocado is one of the most in-demand fruits worldwide and the trend towards its sustainable production, regulated by international standards, is increasing. One of the most economically important diseases is root rot, caused by Phythopthora cinnamomi. Regarding this problem, antagonistic microorganism use is an interesting alternative due to their phytopathogen control efficiency. Therefore, the interaction of arbuscular mycorrhizal fungi of the phylum Glomeromycota, native to the Peruvian coast (GWI) and jungle (GFI), and avocado rhizospheric bacteria, Bacillus subtilis and Pseudomonas putida, was evaluated in terms of their biocontrol capacity against P. cinnamomi in the “Zutano” variety of avocado plants. The results showed that the GWI and Bacillus subtilis combination increased the root exploration surface by 466.36%. P. putida increased aerial biomass by 360.44% and B. subtilis increased root biomass by 433.85%. Likewise, P. putida rhizobacteria showed the highest nitrogen (24.60 mg ∙ g−1 DM) and sulfur (2.60 mg ∙ g−1 DM) concentrations at a foliar level. The combination of GWI and Bacillus subtilis was the treatment that presented the highest calcium (16.00 mg ∙ g−1 DM) and magnesium (8.80 mg ∙ g−1 DM) concentrations. The microorganisms’ multifunctionality reduced disease severity by 85 to 90% due to the interaction between mycorrhizae and rhizobacteria. In conclusion, the use of growth promoting microorganisms that are antagonistic to P. cinnamomi represents a potential strategy for sustainable management of avocado cultivation.Ítem Interaction between Trichoderma sp., Pseudomonas putida, and two organic amendments on the yield and quality of strawberries (Fragaria x annanasa cv. San Andreas) in the Huaral region, Peru(MDPI, 2024-07-22) Huasasquiche, Lucero; Ccori, Thania; Alejandro, Leonela; Cántaro Segura, Héctor; Samaniego, Tomás; Solórzano, RichardStrawberry cultivation holds significant economic and social promise within Peruvian fruit production. However, conventional management practices have led to the excessive use of agrochemicals in this crop. This study proposes an organic approach to strawberry production, integrating less environmentally harmful technologies. The aim was to assess microbial inoculation by using Trichoderma sp. and Pseudomonas putida and the application of organic amendments on strawberry seedlings of the commercial cultivar “San Andreas”. A field experiment was established with evaluations in the vegetative and productive stages. Results indicate that the co-inoculation of Trichoderma sp. and Pseudomonas putida increased leaf area by 7%, and enhanced the aerial part’s fresh and dry biomass by 13% and 28%, respectively, compared to treatment without microbial inoculation. Concurrently, compost application increased the leaf number and aerial dry biomass by 22% and 19% at the end of the vegetative stage, respectively, compared to treatment without organic amendment. In addition, it reduced the days for flowering, maintaining the fruit’s physicochemical attributes. Regarding yield, the amendments application significantly enhanced fruit weight per plant by 40%, especially when applied together with Trichoderma sp., and co-inoculation increased the number of fruits per meter square by 22%. These findings highlight the potential of technologies such as microbial inoculation and organic amendments to enhance strawberry yields and to gradually reduce the use of synthetic fertilizers.