Examinando por Materia "Soil quality"
Mostrando 1 - 3 de 3
- Resultados por página
- Opciones de ordenación
Ítem Analysis of soil quality through aerial biomass contribution of three forest species in relict high Andean forests of Peru(Malaysian Society of Soil Science, 2024-05-17) Zanabria Cáceres, Ysaias Timoteo; Cordova Torres, Betty; Clemente Archi, Gelly; Zanabria Mallqui, Rosario Magaly; Enriquez Pinedo, Lucia Carolina; Ccopi Trucios, Dennis; Ortega Quispe, Kevin AbnerThe biomass that accumulates on the forest floor and its subsequent decomposition play an important role in maintaining the productivity of different terrestrial ecosystems by constituting the main nutrient flow to the soil. The objective of the study focused on analyzing the nutrient contribution to the soil derived from the aboveground biomass of three native forest species in relict forests of the Central Peruvian Sierra with socioeconomic and environmental relevance. Using random delineation methods, soil samples were collected at 20-30 cm depth, which were subjected to physical, chemical, and biological analyses, developing the determination of a Soil Quality Index (SQI). The results highlight that forests of Polylepis racemosa and Alnus acuminata significantly exhibit a higher SQI, with values of 0.66 and 0.58, respectively, compared to Escallonia resinosa, with the forestless system being of lower quality with an SQI of 0.28. The relict forests, Dorado, Colpar, and Talhuis, presented the highest SQIs (0.53, 0.52, and 0.48), while Saño obtained the lowest SQI with 0.39, with no significant differences among them. The forests of Polylepis racemosa and Alnus acuminata showed a superior soil structure, higher organic matter content, moisture retention, and microbial biomass compared to other analyzed systems.Ítem Soil, site, and management factors affecting cadmium concentration in cacao-growing soils(MDPI, 2020-06-05) Scaccabarozzi, Daniela; Castillo, Luis; Aromatisi, Andrea; Milne, Lynne; Bullón Castillo, Adolfo Alejandro; Muñoz Rojas, MiriamSoil contamination by potentially toxic trace elements (PTEs) such as Cadmium (Cd), is a major environmental concern because of its potential implications to human health. Cacao-based products have been identified as food sources with relatively high Cd contents. Here, we assessed Cd concentrations of cacao-growing soils in four major agricultural regions with contrasting climates in Peru, one of the main exporters of cacao products worldwide. At each study site (n = 40) a broad range of potential factors affecting Cd concentration in soils, i.e., site, soil and management, were evaluated. Concentrations of Cd ranged between 1.1-3.2 mg kg-1. Mean values per region were below 2.7 mg kg-1, usually established as upper-limit for non-polluted soils. Cadmium concentrations were significantly (p < 0.001) higher in sites at higher elevations and in a temperate, drier climate. Cadmium correlated positively with pH (r = 0.57; p < 0.05) and was higher (p < 0.001) in alluvial sediments and Leptosols. Management factors (cacao variety, cultivation year, management practices) and agroecology did not affect Cd concentrations directly. Overall, this study highlights the importance of considering a broad range of both natural and anthropogenic factors to evaluate Cd concentrations in cacao-growing soils and contribute to effective and sustainable cacao production by improving land management and planningÍtem Sustainability of livestock farms: The case of the district of Moyobamba, Peru(Elsevier, 2023-01-21) Durand Chávez, Luz Marlene; Quispe Ccasa, Hurley Abel; Linares Rivera, Jaime Lizardo; Segura Portocarrero, Gleni Tatiana; Calderón Tito, René; Vásquez Pérez, Héctor Vladimir; Maicelo Quintana, Jorge Luis; Ampuero Trigoso, Gustavo; Robles Rodríguez, Rafael René; Saucedo Uriarte, José AméricoThe Peruvian Amazon is a geographical area with great biodiversity, where the main economic activities are agricultural crops and grazing animals. The evaluation of sustainability in production systems is based on the analysis of economic, environmental and social components, which are variable between production units or livestock farms. The classification of livestock farms based on their characteristics of similarity and differences can contribute to the most appropriate assessment of their level of sustainability. The objective of this research was to determine the level of sustainability of livestock farms in the district of Moyobamba, San Martín, Peru, based on environmental, economic and social criteria. The research was carried out from November 2018 to February 2019 with a survey of a sample of 60 livestock farms out of a population of 2220. A survey-type form and data collection in the field were applied, adapting a methodology that proposes inferring on 33 indicators grouped into six criteria: three environmental criteria (soil quality, pasture health and animal quality), two economic criteria (farm system and farm economy), and a social criterion of the farm. A scale from 1 to 10 was used to assess the condition of each indicator. The typification of farms was carried out through a Conglomerate Analysis. To analyze the level of sustainability, Amoeba graphs were constructed for each defined farm group. Qualitative variables were analyzed with contingency tables and quantitative variables using the T test (p < 0.05). Three types of livestock farms were identified, differentiated by level of education, farm size, years in cattle raising and number of cattle heads (p < 0.05), where Group 1 is less experienced, Group 1 has more area and cattle, and Group 3 only have older years in livestock. There were significant differences between the evaluated criteria and the sustainability index. From the typification of livestock farms, Group 2 (13 farms) presented a higher level of sustainability as did Group 3 (16 farms), while Group 1 (31 farms).