Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2200
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSaravia Navarro, David-
dc.contributor.authorSalazar Coronel, Wilian-
dc.contributor.authorValqui Valqui, Lamberto-
dc.contributor.authorQuille Mamani, Javier Alvaro-
dc.contributor.authorPorras Jorge, Zenaida Rossana-
dc.contributor.authorCorredor Arizapana, Flor Anita-
dc.contributor.authorBarboza Castillo, Elgar-
dc.contributor.authorVásquez Pérez, Héctor Vladimir-
dc.contributor.authorCasas Diaz, Andrés V.-
dc.contributor.authorArbizu Berrocal, Carlos Irvin-
dc.date.accessioned2023-06-05T17:55:30Z-
dc.date.available2023-06-05T17:55:30Z-
dc.date.issued2022-10-26-
dc.identifier.citationSaravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630en
dc.identifier.issn2073-4395-
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2200-
dc.description.abstractEarly assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.en
dc.formatapplication/pdf-
dc.language.isoeng-
dc.publisherMDPIen
dc.relation.ispartofurn:issn:2073-4395-
dc.relation.ispartofseriesAgronomyen
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectVegetation indicesen
dc.subjectPrecision farmingen
dc.subjectHybriden
dc.subjectPhenotypingen
dc.subjectRemote sensingen
dc.titleYield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peruen
dc.typeinfo:eu-repo/semantics/article-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06-
dc.publisher.countryCH-
dc.identifier.doihttps://doi.org/10.3390/agronomy12112630-
google.citation.volume12-
google.citation.issue11-
dc.subject.agrovocPrecision agriculturaen
dc.subject.agrovocAgricultura de precisiónes_PE
dc.subject.agrovocPhenotypingen
dc.subject.agrovocFenotipadoes_PE
dc.subject.agrovocRemote sensingen
dc.subject.agrovocTeledetecciónes_PE
dc.subject.agrovocZea maysen
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Saravia_et-al_2022_maize_yield.pdfArticle (English)3,05 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons