Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2290
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPizarro Carcausto, Samuel Edwin-
dc.contributor.authorPricope, Narcisa G.-
dc.contributor.authorFigueroa Venegas, Deyanira Antonella-
dc.contributor.authorCarbajal Llosa, Carlos Miguel-
dc.contributor.authorQuispe Huincho, Miriam Rocío-
dc.contributor.authorVera Vilchez, Jesús Emilio-
dc.contributor.authorAlejandro Méndez, Lidiana Rene-
dc.contributor.authorAchallma Mendoza, Lino-
dc.contributor.authorGonzález Tovar, Izamar Estrella-
dc.contributor.authorSalazar Coronel, Wilian-
dc.contributor.authorLoayza, Hildo-
dc.contributor.authorCruz Luis, Juancarlos Alejandro-
dc.contributor.authorArbizu Berrocal, Carlos Irvin-
dc.date.accessioned2023-08-31T17:37:23Z-
dc.date.available2023-08-31T17:37:23Z-
dc.date.issued2023-06-20-
dc.identifier.citationPizarro, S.; Pricope, N. G.; Figueroa, D.; Carbajal, C.; Quispe, M.; Vera, J.; ... & Arbizu, C. I. (2023). Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sensing, 15(12), 3203. doi: 10.3390/rs15123203es_PE
dc.identifier.issn2072-4292-
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2290-
dc.description.abstractThe spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.relation.ispartofurn:issn:2072-4292es_PE
dc.relation.ispartofseriesRemote sensinges_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectSoil mappinges_PE
dc.subjectUAVes_PE
dc.subjectGoogle Earth Enginees_PE
dc.subjectMachine learninges_PE
dc.subjectCloud computinges_PE
dc.titleImplementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imageryes_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06es_PE
dc.publisher.countryCHes_PE
dc.identifier.doihttps://doi.org/10.3390/rs15123203-
dc.subject.agrovocSoil surveyses_PE
dc.subject.agrovocReconocimiento de sueloses_PE
dc.subject.agrovocUnmanned aerial vehicleses_PE
dc.subject.agrovocVehículos aéreos no tripuladoses_PE
dc.subject.agrovocMachine learninges_PE
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Pizarro_et-al_2023_soil_mapping.pdfArticle (English)11,1 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons