Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2466
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMedina Medina, Angel James-
dc.contributor.authorSalas López, Rolando-
dc.contributor.authorZabaleta Santisteban, Jhon Antony-
dc.contributor.authorTuesta Trauco, Katerin Meliza-
dc.contributor.authorTurpo Cayo, Efrain Yury-
dc.contributor.authorHuaman Haro, Nixon-
dc.contributor.authorOliva Cruz, Manuel-
dc.contributor.authorGómez Fernández, Darwin-
dc.date.accessioned2024-04-02T17:01:35Z-
dc.date.available2024-04-02T17:01:35Z-
dc.date.issued2024-03-08-
dc.identifier.citationMedina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy14030557es_PE
dc.identifier.issn2073-4395-
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2466-
dc.description.abstractOne of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.relation.ispartofurn:issn:2073-4395es_PE
dc.relation.ispartofseriesAgronomyes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectSARes_PE
dc.subjectRicees_PE
dc.subjectMonitoringes_PE
dc.subjectChangeses_PE
dc.titleAn analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)es_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06es_PE
dc.publisher.countryCHes_PE
dc.identifier.doihttps://doi.org/10.3390/agronomy14030557-
dc.subject.agrovocSAR (radar)es_PE
dc.subject.agrovocRadar de abertura sintéticaes_PE
dc.subject.agrovocMonitoringes_PE
dc.subject.agrovocVigilanciaes_PE
dc.subject.agrovocOryza sativaes_PE
dc.subject.agrovocRicees_PE
dc.subject.agrovocArrozes_PE
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Medina_et-al_2024_rice_cultivation.pdf32,02 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons