Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12955/2583
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Galindo Luján, Rocío | - |
dc.contributor.author | Pont, Laura | - |
dc.contributor.author | Quispe Jacobo, Fredy Enrique | - |
dc.contributor.author | Sanz Nebot, Victoria | - |
dc.contributor.author | Benavente, Fernando | - |
dc.date.accessioned | 2024-09-30T18:41:18Z | - |
dc.date.available | 2024-09-30T18:41:18Z | - |
dc.date.issued | 2024-06-17 | - |
dc.identifier.citation | Galindo-Luján, R.; Pont, L.; Quispe-Jacobo, F.E.; Sanz-Nebot, V.; & Benavente, F. (2024). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops. Foods,13(12),1906. doi:10.3390/foods13121906 | es_PE |
dc.identifier.issn | 2304-8158 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12955/2583 | - |
dc.description.abstract | Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry. | es_PE |
dc.description.sponsorship | This study was supported by grant PID2021-127137OB-I00, unded byMCIN/AEI/10.13039/501100011033, and by “ERDF A way of making Europe”. The Bioanalysis group of the university of Barcelona is part of the INSA-UB Maria de Maeztu Unit of Excellence (Grant CEX2021-001234-M) funded by MCIN/AEI/FEDER, UE. | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | eng | es_PE |
dc.publisher | MDPI | es_PE |
dc.relation.ispartof | urn:issn:2304-8158 | es_PE |
dc.relation.ispartofseries | Foods | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_PE |
dc.source | Instituto Nacional de Innovación Agraria | es_PE |
dc.source.uri | Repositorio Institucional - INIA | es_PE |
dc.subject | Boiling | es_PE |
dc.subject | Conventional Farming | es_PE |
dc.subject | Extrusion | es_PE |
dc.subject | Maldiquant | es_PE |
dc.subject | MALDI-TOF-MS | es_PE |
dc.subject | Multivariate | es_PE |
dc.subject | Data Analysis | es_PE |
dc.subject | Organic Farming | es_PE |
dc.subject | Proteins | es_PE |
dc.subject | Quinoa | es_PE |
dc.title | Matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with chemometrics for protein profiling and classification of boiled and extruded quinoa from conventional and organic crops | es_PE |
dc.type | info:eu-repo/semantics/article | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.11.00 | es_PE |
dc.publisher.country | CH | es_PE |
dc.identifier.doi | https://doi.org/10.3390/foods13121906 | - |
dc.subject.agrovoc | Boiling | es_PE |
dc.subject.agrovoc | Ebullición | es_PE |
dc.subject.agrovoc | Conventional farming | es_PE |
dc.subject.agrovoc | Agricultura convencional | es_PE |
dc.subject.agrovoc | Extrusion | es_PE |
dc.subject.agrovoc | Spectrometry | es_PE |
dc.subject.agrovoc | Espectrometría | es_PE |
dc.subject.agrovoc | Multivariate analysis | es_PE |
dc.subject.agrovoc | Análisis multivariante | es_PE |
dc.subject.agrovoc | Data analysis | es_PE |
dc.subject.agrovoc | Análisis de datos | es_PE |
dc.subject.agrovoc | Organic agriculture | es_PE |
dc.subject.agrovoc | Agricultura orgánica | es_PE |
dc.subject.agrovoc | Quinoa | es_PE |
dc.subject.agrovoc | Quinua | es_PE |
Aparece en las colecciones: | Artículos científicos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Galindo_et-al_2024_spectrometry_quinoa_crops.pdf | 2,94 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons