Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2587
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCastro, Wilson-
dc.contributor.authorTene, Baldemar-
dc.contributor.authorCastro, Jorge-
dc.contributor.authorGuivin, Alex-
dc.contributor.authorRuesta Campoverde, Nelson Asdrubal-
dc.contributor.authorAvila George, Himer-
dc.date.accessioned2024-09-30T19:02:01Z-
dc.date.available2024-09-30T19:02:01Z-
dc.date.issued2024-07-29-
dc.identifier.citationCastro, W.; Tene, B.; Castro, J.; Guivin, A.; Ruesta-Campoverde, N.A.; Avila-George, H. (2024). Mango varietal discrimination using hyperspectral imaging and machine learning. Neural computing and applications, 36, 18693-18703. doi:10.1007/s00521-024-10218-xes_PE
dc.identifier.issn1433-3058-
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2587-
dc.description.abstractMango is a highly diverse tropical fruit with numerous varieties that differ in flavor, texture, and chemical composition. Consequently, identifying fraudulent substitutions of mango varieties poses a significant challenge using traditional techniques. Therefore, there is an increasing need for new methods to discriminate between mango varieties. Hyperspectral imaging coupled with machine learning techniques presents a promising approach for varietal discrimination. In this study, mango samples of eleven varieties were collected from a germplasm bank, with four slices obtained from each sample. Hyperspectral images were acquired in the Vis–NIR and NIR ranges for each slice, and spectral profiles were extracted and pretreated. Three discrimination models, linear discriminant analysis, K-nearest neighbor, and artificial neural networks, were implemented and validated using relevant wavelengths selected through a covering array feature selection algorithm. The performance of these models was evaluated using precision, accuracy, and F-score metrics. The average spectral profiles of the studied varieties exhibited a similar behavior with slight differences, which could be used for classification within the evaluated ranges. The optimal number of variables selected to refine the models was 17 for the UV–Vis–NIR range and 21 for the NIR range, with an accuracy ranging between 0.752 and 0.972. This study concludes that hyperspectral imaging combined with machine learning techniques can effectively discriminate between different varieties of mango.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherSpringer Naturees_PE
dc.relation.ispartofurn:issn:1433-3058es_PE
dc.relation.ispartofseriesNeural computing and applicationses_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectANNes_PE
dc.subjectClassificationes_PE
dc.subjectHyperspectral imaginges_PE
dc.subjectKNNes_PE
dc.subjectLDAes_PE
dc.subjectMachine learninges_PE
dc.subjectMangoes_PE
dc.titleMango varietal discrimination using hyperspectral imaging and machine learninges_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.01es_PE
dc.publisher.countryGBes_PE
dc.identifier.doihttps://doi.org/10.1007/s00521-024-10218-x-
dc.subject.agrovocEspectroscopiaes_PE
dc.subject.agrovocSpectroscopyes_PE
dc.subject.agrovocMachine learninges_PE
dc.subject.agrovocAprendizaje automáticoes_PE
dc.subject.agrovocMangifera indicaes_PE
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
No hay ficheros asociados a este ítem.


Los ítems del repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.