An algorithm oriented to the classification of quinoa grains by color from digital images

dc.contributor.authorQuispe, Moisés
dc.contributor.authorArroyo, José
dc.contributor.authorKemper, Guillermo
dc.contributor.authorSoto Jeri, Jonell
dc.coverage.spatialPerúes_PE
dc.date.accessioned2022-11-21T03:29:55Z
dc.date.available2022-11-21T03:29:55Z
dc.date.issued2019-05-31
dc.description11 páginases_PE
dc.description.abstractThe present work proposes an image processing algorithm oriented to identify the coloration of the quinoa grains that make up the different samples obtained from the production of a crop field. The objective is to perform quality control of production based on the statistics of grain coloration, which is currently done manually based on subjective visual perception. This generates results that totally depend on the abilities and the particular criteria of each observer, generating considerable errors in the identification of the colors and tonalities. The problem is further complicated by the nonexistence, at present, of a pattern or standard of coloration of quinoa grains that specifically defines a referential color map. In this sense, through this work, an algorithm is proposed oriented to classify the grains of the acquired samples by their color via digital images and provide corresponding statistics for the quality control of the production. The algorithm uses the color models RGB, HSV and YCbCr, thresholding, segmentation by binary masks, erosion, connectivity, labeling and sequential classification based on 8 colors established by agronomists. The obtained results showed a performance of the proposed algorithm of 91.25% in relation to the average success rate.es_PE
dc.formatapplication/pdf
dc.identifier.citationQuispe, M.; Arroyo, J.; Kemper, G.; Soto, J. (2020). An algorithm oriented to the classification of quinoa grains by color from digital images. In: Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A., Montiel Díaz, P. (eds) Advances in Emerging Trends and Technologies. ICAETT 2019. Advances in Intelligent Systems and Computing, 1066, 237-247. doi: 10.1007/978-3-030-32022-5_23es_PE
dc.identifier.doihttps://doi.org/10.1007/978-3-030-32022-5_23
dc.identifier.isbn978-3-030-32022-5
dc.identifier.urihttps://hdl.handle.net/20.500.12955/1977
dc.language.isoeng
dc.publisherSpringer Naturees_PE
dc.publisher.countryCHes_PE
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computingen
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-030-32022-5_23
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectColor classificationes_PE
dc.subjectImage processinges_PE
dc.subjectQuinoaes_PE
dc.subject.agrovocPlantas feculentases_PE
dc.subject.agrovocTratamiento de imágeneses_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.04.01
dc.titleAn algorithm oriented to the classification of quinoa grains by color from digital imagesen
dc.typeinfo:eu-repo/semantics/bookPart

Archivos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA