Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru

dc.contributor.authorCarbajal Llosa, Carlos Miguel
dc.contributor.authorTumbalobos Dextre, Merely
dc.contributor.authorCondori Ataupillco, Levi Tatiana
dc.contributor.authorCuellar Condori, Nestor Edwin
dc.contributor.authorGavilan, Carla
dc.date.accessioned2025-12-03T15:01:44Z
dc.date.available2025-12-03T15:01:44Z
dc.date.issued2025-11-06
dc.description.abstractSoil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging‐adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5‐fold cross‐validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90% and achieving R² up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8%, R² = 0.30–0.39). ML models performed poorly (negative R²), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non‐stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.
dc.description.sponsorshipTo the Soil, Water, and Foliar Laboratory (LABSAF) network technicians, especially of La Molina, Canaan, ´ and Illpa Experimental Agrarian Stations headquarters. Special thanks go to Marilia Coila Mamani and Fredy Flores Galindo for their help collecting soil samples
dc.formatapplication/pdf
dc.identifier.citationCarbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e01026
dc.identifier.doihttps://doi.org/10.1016/j.geodrs.2025.e01026
dc.identifier.issn2352-0094
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2952
dc.language.isoeng
dc.publisherElsevier B.V.
dc.publisher.countryNL
dc.relation.ispartofurn:issn:2352-0094
dc.relation.ispartofseriesGeoderma Regional
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectDigital soil mapping
dc.subjectSoil organic carbon stock
dc.subjectGeographically weighted regression
dc.subjectMachine learning regression algorithms
dc.subjectAndes
dc.subjectCartografía digital de suelos
dc.subjectReservas de carbono orgánico del suelo
dc.subjectRegresión ponderada geográficamente
dc.subjectAlgoritmos de regresión de aprendizaje automático
dc.subject.agrovocRegresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.04
dc.titleSpatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
dc.typeinfo:eu-repo/semantics/preprint

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Carbajal_et-al_2025_carbon_spatial prediction_andean basins.pdf
Tamaño:
1.61 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA