Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2086
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGoycochea Casas, Gianmarco-
dc.contributor.authorElera Gonzáles, Duberlí Geomar-
dc.contributor.authorBaselly Villanueva, Juan Rodrigo-
dc.contributor.authorPereira Fardin, Leonardo-
dc.contributor.authorGarcia Leite, Hélio-
dc.date.accessioned2023-02-23T15:25:15Z-
dc.date.available2023-02-23T15:25:15Z-
dc.date.issued2022-04-29-
dc.identifier.citation​​Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697​es_PE
dc.identifier.issn1999-4907-
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2086-
dc.description.abstract​​The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.​es_PE
dc.formatapplication/pdf-
dc.language.isospa-
dc.publisherMDPIes_PE
dc.relation.ispartofurn:issn:1999-4907-
dc.relation.ispartofseries​​Forests​en
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rights.uri​​https://creativecommons.org/licenses/by/4.0/​-
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subject​​Deep learninges_PE
dc.subject​Artificial neural networkes_PE
dc.subject​Total heightes_PE
dc.subject​Forest management​es_PE
dc.title​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​es_PE
dc.typeinfo:eu-repo/semantics/article-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.02-
dc.publisher.countryCH-
dc.identifier.doihttps://doi.org/10.3390/f13050697-
dc.subject.agrovocForest managementen
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Goycochea_et-al_2022_forest_management.pdfArtículo4,28 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons