Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2086
Título : ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
Autor : Goycochea Casas, Gianmarco
Elera Gonzáles, Duberlí Geomar
Baselly Villanueva, Juan Rodrigo
Pereira Fardin, Leonardo
Garcia Leite, Hélio
Fecha de publicación : 29-abr-2022
Publicado en: ​​Forests​
Resumen : ​​The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.​
Palabras clave : ​​Deep learning
​Artificial neural network
​Total height
​Forest management​
metadata.dc.subject.agrovoc: Forest management
Editorial : MDPI
Citación : ​​Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697​
URI : https://hdl.handle.net/20.500.12955/2086
metadata.dc.identifier.doi: https://doi.org/10.3390/f13050697
ISSN : 1999-4907
metadata.dc.subject.ocde: https://purl.org/pe-repo/ocde/ford#4.01.02
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Goycochea_et-al_2022_forest_management.pdfArtículo4,28 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons