Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2200
Título : Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru
Autor : Saravia Navarro, David
Salazar Coronel, Wilian
Valqui Valqui, Lamberto
Quille Mamani, Javier Alvaro
Porras Jorge, Zenaida Rossana
Corredor Arizapana, Flor Anita
Barboza Castillo, Elgar
Vásquez Pérez, Héctor Vladimir
Casas Diaz, Andrés V.
Arbizu Berrocal, Carlos Irvin
Fecha de publicación : 26-oct-2022
Publicado en: Agronomy
Resumen : Early assessment of crop development is a key aspect of precision agriculture. Shortening the time of response before a deficit of irrigation, nutrients and damage by diseases is one of the usual concerns in agriculture. Early prediction of crop yields can increase profitability for the farmer’s economy. In this study, we aimed to predict the yield of four maize commercial hybrids (Dekalb7508, Advanta9313, MH_INIA619 and Exp_05PMLM) using vegetation indices (VIs). A total of 10 VIs (NDVI, GNDVI, GCI, RVI, NDRE, CIRE, CVI, MCARI, SAVI, and CCCI) were considered for evaluating crop yield and plant cover at 31, 39, 42, 46 and 51 days after sowing (DAS). A multivariate analysis was applied using principal component analysis (PCA), linear regression, and r-Pearson correlation. Highly significant correlations were found between plant cover with VIs at 46 (GNDVI, GCI, RVI, NDRE, CIRE and CCCI) and 51 DAS (GNDVI, GCI, NDRE, CIRE, CVI, MCARI and CCCI). The PCA showed clear discrimination of the dates evaluated with VIs at 31, 39 and 51 DAS. The inclusion of the CIRE and NDRE in the prediction model contributed to estimating the performance, showing greater precision at 51 DAS. The use of unmanned aerial vehicles (UAVs) to monitor crops allows us to optimize resources and helps in making timely decisions in agriculture in Peru.
Palabras clave : Vegetation indices
Precision farming
Hybrid
Phenotyping
Remote sensing
metadata.dc.subject.agrovoc: Precision agricultura
Agricultura de precisión
Phenotyping
Fenotipado
Remote sensing
Teledetección
Zea mays
Editorial : MDPI
Citación : Saravia, D., Salazar, W., Valqui-Valqui, L., Quille-Mamani, J., Porras-Jorge, R., Corredor, F. A., Barboza, E., Vásquez, H. V., Casas Diaz, A. V., & Arbizu, C. I. (2022). Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the Coast of Peru. Agronomy, 12(11), 2630. doi: 10.3390/agronomy12112630
URI : https://hdl.handle.net/20.500.12955/2200
metadata.dc.identifier.doi: https://doi.org/10.3390/agronomy12112630
ISSN : 2073-4395
metadata.dc.subject.ocde: https://purl.org/pe-repo/ocde/ford#4.01.06
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Saravia_et-al_2022_maize_yield.pdfArticle (English)3,05 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons