Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2576
Título : From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach
Autor : Carbajal, Mariella
Ramirez, David A.
Turin Canchaya, Cecilia Claudia
Schaeffer, Sean M.
Konkel, Julie
Ninanya, Johan
Rinza, Javier
De Mendiburu, Felipe
Zorogastua, Percy
Villaorduña, Liliana
Quiroz, Roberto
Fecha de publicación : 9-sep-2024
Publicado en: Ecosystems
Resumen : Andean highland soils contain significant quantities of soil organic carbon (SOC); however, more efforts still need to be made to understand the processes behind the accumulation and persistence of SOC and its fractions. This study modeled SOC variables—SOC, refractory SOC (RSOC), and the 13C isotope composition of SOC (d13CSOC)—using machine learning (ML) algorithms in the Central Andean Highlands of Peru, where grasslands and wetlands (‘‘bofedales’’) dominate the landscape surrounded by Junin National Reserve. A total of 198 soil samples (0.3 m depth) were collected to assess SOC variables. Four ML algorithms—random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and eXtreme gradient boosting (XGB)—were used to model SOC variablesusing remote sensing data, land-use and landcover (LULC, nine categories), climate topography, and sampled physical–chemical soil variables. RF was the best algorithm for SOC and d13CSOC prediction, whereas ANN was the best to model RSOC. ‘‘Bofedales’’ showed 2–3 times greater SOC (11.2 ± 1.60%) and RSOC (1.10 ± 0.23%) and more depleted d13CSOC (- 27.0 ± 0.44 &) than other LULC, which reflects high C persistent, turnover rates, and plant productivity. This highlights the importance of ‘‘bofedales’’ as SOC reservoirs. LULC and vegetation indices close to the near-infrared bands were the most critical environmental predictors to model C variables SOC and d13CSOC. In contrast, climatic indices were more important environmental predictors for RSOC. This study’s outcomes suggest the potential of ML methods, with a particular emphasis on RF, for mapping SOC and its fractions in the Andean highlands.
Palabras clave : Artificial neural networks
Bofedales
13C isotope composition
Extreme gradient boosting
Grasslands
Random forest
Refractory C fraction
Support vector machine
metadata.dc.subject.agrovoc: Redes de neuronas
Fishing nets
Tierra húmeda
Wetlands
Isótopo
Isotopes
Gradiente de temperatura
Temperature gradients
Grasslands
Pradera
Machine learning
Aprendizaje automático
Editorial : Springer
Citación : Carbajal, M.; Ramirez, D.A.; Turin-Canchaya, C.C.; Schaeffer, S.M.; Konkel, J.; Ninanya, J.; Rinza, J.; De Mendiburu, F.; Zorogastua, P.; Villaordun, L.; & Quiroz, R. (2024). From rangelands to cropland, land-use change and its impact on soil organic carbon variables in a Peruvian Andean highlands: a machine learning modeling approach. Ecosystems (2024). doi: 10.1007/s10021-024-00928-7
URI : https://hdl.handle.net/20.500.12955/2576
metadata.dc.identifier.doi: https://doi.org/10.1007/s10021-024-00928-7
ISSN : 1435-0629
metadata.dc.subject.ocde: https://purl.org/pe-repo/ocde/ford#4.01.04
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Carbajal_et-al_2024_land-use_change_soil.pdf3,03 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons