Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2599
Título : Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging
Autor : Urquizo Barrera, Julio Cesar
Ccopi Trucios, Dennis
Ortega Quispe, Kevin
Castañeda Tinco, Italo
Patricio Rosales, Solanch
Passuni Huayta, Jorge
Figueroa Venegas, Deyanira
Enriquez Pinedo, Lucia
Ore Aquino, Zoila
Pizarro Carcausto, Samuel
Fecha de publicación : 6-oct-2024
Publicado en: Remote sensing
Resumen : Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.
Palabras clave : Germination rate
Machine learning
Remote sensing
Photogrammetry
Vegetation indices
metadata.dc.subject.agrovoc: Germinability
Poder germinativo
Machine learning
Aprendizaje automatico
Remote sensing
Teledeteccion
Photogrammetry
Fotogrametría
Vegetation index
Índice de vegetación
Editorial : MDPI
Citación : Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720
URI : https://hdl.handle.net/20.500.12955/2599
metadata.dc.identifier.doi: https://doi.org/10.3390/rs16193720
ISSN : 2072-4292
metadata.dc.subject.ocde: https://purl.org/pe-repo/ocde/ford#4.01.06
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Urquizo_et-al_2024_estimation_oat_UAV.pdf8,32 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons