Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12955/2599
Título : | Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging |
Autor : | Urquizo Barrera, Julio Cesar Ccopi Trucios, Dennis Ortega Quispe, Kevin Castañeda Tinco, Italo Patricio Rosales, Solanch Passuni Huayta, Jorge Figueroa Venegas, Deyanira Enriquez Pinedo, Lucia Ore Aquino, Zoila Pizarro Carcausto, Samuel |
Fecha de publicación : | 6-oct-2024 |
Publicado en: | Remote sensing |
Resumen : | Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose. |
Palabras clave : | Germination rate Machine learning Remote sensing Photogrammetry Vegetation indices |
metadata.dc.subject.agrovoc: | Germinability Poder germinativo Machine learning Aprendizaje automatico Remote sensing Teledeteccion Photogrammetry Fotogrametría Vegetation index Índice de vegetación |
Editorial : | MDPI |
Citación : | Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720 |
URI : | https://hdl.handle.net/20.500.12955/2599 |
metadata.dc.identifier.doi: | https://doi.org/10.3390/rs16193720 |
ISSN : | 2072-4292 |
metadata.dc.subject.ocde: | https://purl.org/pe-repo/ocde/ford#4.01.06 |
Aparece en las colecciones: | Artículos científicos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Urquizo_et-al_2024_estimation_oat_UAV.pdf | 8,32 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons