Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/20.500.12955/2599
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Urquizo Barrera, Julio Cesar | - |
dc.contributor.author | Ccopi Trucios, Dennis | - |
dc.contributor.author | Ortega Quispe, Kevin | - |
dc.contributor.author | Castañeda Tinco, Italo | - |
dc.contributor.author | Patricio Rosales, Solanch | - |
dc.contributor.author | Passuni Huayta, Jorge | - |
dc.contributor.author | Figueroa Venegas, Deyanira | - |
dc.contributor.author | Enriquez Pinedo, Lucia | - |
dc.contributor.author | Ore Aquino, Zoila | - |
dc.contributor.author | Pizarro Carcausto, Samuel | - |
dc.date.accessioned | 2024-10-24T17:07:01Z | - |
dc.date.available | 2024-10-24T17:07:01Z | - |
dc.date.issued | 2024-10-06 | - |
dc.identifier.citation | Urquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720 | es_PE |
dc.identifier.issn | 2072-4292 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12955/2599 | - |
dc.description.abstract | Accurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose. | es_PE |
dc.description.sponsorship | This research was funded by the project “Creación del servicio de agricultura de precision en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos” of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government with grant number CUI 2449640. | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | eng | es_PE |
dc.publisher | MDPI | es_PE |
dc.relation.ispartof | urn:issn:2072-4292 | es_PE |
dc.relation.ispartofseries | Remote sensing | es_PE |
dc.rights | info:eu-repo/semantics/openAccess | es_PE |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | es_PE |
dc.source | Instituto Nacional de Innovación Agraria | es_PE |
dc.source.uri | Repositorio Institucional - INIA | es_PE |
dc.subject | Germination rate | es_PE |
dc.subject | Machine learning | es_PE |
dc.subject | Remote sensing | es_PE |
dc.subject | Photogrammetry | es_PE |
dc.subject | Vegetation indices | es_PE |
dc.title | Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging | es_PE |
dc.type | info:eu-repo/semantics/article | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#4.01.06 | es_PE |
dc.publisher.country | CH | es_PE |
dc.identifier.doi | https://doi.org/10.3390/rs16193720 | - |
dc.subject.agrovoc | Germinability | es_PE |
dc.subject.agrovoc | Poder germinativo | es_PE |
dc.subject.agrovoc | Machine learning | es_PE |
dc.subject.agrovoc | Aprendizaje automatico | es_PE |
dc.subject.agrovoc | Remote sensing | es_PE |
dc.subject.agrovoc | Teledeteccion | es_PE |
dc.subject.agrovoc | Photogrammetry | es_PE |
dc.subject.agrovoc | Fotogrametría | es_PE |
dc.subject.agrovoc | Vegetation index | es_PE |
dc.subject.agrovoc | Índice de vegetación | es_PE |
Aparece en las colecciones: | Artículos científicos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Urquizo_et-al_2024_estimation_oat_UAV.pdf | 8,32 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons