Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/20.500.12955/2599
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorUrquizo Barrera, Julio Cesar-
dc.contributor.authorCcopi Trucios, Dennis-
dc.contributor.authorOrtega Quispe, Kevin-
dc.contributor.authorCastañeda Tinco, Italo-
dc.contributor.authorPatricio Rosales, Solanch-
dc.contributor.authorPassuni Huayta, Jorge-
dc.contributor.authorFigueroa Venegas, Deyanira-
dc.contributor.authorEnriquez Pinedo, Lucia-
dc.contributor.authorOre Aquino, Zoila-
dc.contributor.authorPizarro Carcausto, Samuel-
dc.date.accessioned2024-10-24T17:07:01Z-
dc.date.available2024-10-24T17:07:01Z-
dc.date.issued2024-10-06-
dc.identifier.citationUrquizo-Barrera, J.; Ccopi-Trucios, D.; Ortega-Quispe, K.; Castañeda-Tinco, I.; Patricio-Rosales, S.; Passuni-Huayta, J.; Figueroa-Venegas, D.; Enriquez-Pinedo, L.; Ore-Aquino, Z.; & Pizarro-Carcausto, S. (2024). Estimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaging. Remote sensing,16, 3720. doi:10.3390/rs16193720es_PE
dc.identifier.issn2072-4292-
dc.identifier.urihttps://hdl.handle.net/20.500.12955/2599-
dc.description.abstractAccurate and timely estimation of oat biomass is crucial for the development of sustainable and efficient agricultural practices. This research focused on estimating and predicting forage oat biomass using UAV and agronomic variables. A Matrice 300 equipped with a multispectral camera was used for 14 flights, capturing 21 spectral indices per flight. Concurrently, agronomic data were collected at six stages synchronized with UAV flights. Data analysis involved correlations and Principal Component Analysis (PCA) to identify significant variables. Predictive models for forage biomass were developed using various machine learning techniques: linear regression, Random Forests (RFs), Support Vector Machines (SVMs), and Neural Networks (NNs). The Random Forest model showed the best performance, with a coefficient of determination R2 of 0.52 on the test set, followed by Support Vector Machines with an R2 of 0.50. Differences in root mean square error (RMSE) and mean absolute error (MAE) among the models highlighted variations in prediction accuracy. This study underscores the effectiveness of photogrammetry, UAV, and machine learning in estimating forage biomass, demonstrating that the proposed approach can provide relatively accurate estimations for this purpose.es_PE
dc.description.sponsorshipThis research was funded by the project “Creación del servicio de agricultura de precision en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín 4 Departamentos” of the Ministry of Agrarian Development and Irrigation (MIDAGRI) of the Peruvian Government with grant number CUI 2449640.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoenges_PE
dc.publisherMDPIes_PE
dc.relation.ispartofurn:issn:2072-4292es_PE
dc.relation.ispartofseriesRemote sensinges_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/es_PE
dc.sourceInstituto Nacional de Innovación Agrariaes_PE
dc.source.uriRepositorio Institucional - INIAes_PE
dc.subjectGermination ratees_PE
dc.subjectMachine learninges_PE
dc.subjectRemote sensinges_PE
dc.subjectPhotogrammetryes_PE
dc.subjectVegetation indiceses_PE
dc.titleEstimation of forage biomass in oat (Avena sativa) using agronomic variables through UAV multispectral imaginges_PE
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06es_PE
dc.publisher.countryCHes_PE
dc.identifier.doihttps://doi.org/10.3390/rs16193720-
dc.subject.agrovocGerminabilityes_PE
dc.subject.agrovocPoder germinativoes_PE
dc.subject.agrovocMachine learninges_PE
dc.subject.agrovocAprendizaje automaticoes_PE
dc.subject.agrovocRemote sensinges_PE
dc.subject.agrovocTeledetecciones_PE
dc.subject.agrovocPhotogrammetryes_PE
dc.subject.agrovocFotogrametríaes_PE
dc.subject.agrovocVegetation indexes_PE
dc.subject.agrovocÍndice de vegetaciónes_PE
Aparece en las colecciones: Artículos científicos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Urquizo_et-al_2024_estimation_oat_UAV.pdf8,32 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons