Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)

dc.contributor.authorFernandez Jibaja, Jorge Antonio
dc.contributor.authorAtalaya Marin, Nilton
dc.contributor.authorÁlvarez Robledo, Yeltsin Abel
dc.contributor.authorTaboada Mitma, Víctor Hugo
dc.contributor.authorCruz Luis, Juancarlos Alejandro
dc.contributor.authorTineo Flores, Daniel
dc.contributor.authorGoñas Goñas, Malluri
dc.contributor.authorGómez Fernández, Darwin
dc.date.accessioned2025-07-30T06:39:29Z
dc.date.available2025-07-30T06:39:29Z
dc.date.issued2025-07-15
dc.description.abstractRice (Oryza sativa L.) is a staple crop for sustaining global food security and is particularly important in tropical and subtropical regions. In this context, precision agriculture enables more efficient crop management to increase productivity and sustainability. This study proposes an integrated framework for monitoring the phenological development and estimating the yield of O. sativa by combining agronomic variables, vegetation indices (VIs), and meteorological data. Six rice varieties (Victoria, Esperanza, Bellavista, Puntilla, Capoteña, and Valor) were evaluated across six phenological stages using field data, 20 VIs and meteorological parameters. Field data revealed greater tillering of the Puntilla and Valor varieties (9–28 tillers), with Esperanza having the most stable chlorophyll values (21.5–38.7, σ = 10.46) during ripening. The temporal dynamics of the VIs consistently increased from the seedling to inflorescence emergence stage, followed by a decrease during flowering and ripening, which aligns with known physiological transitions in rice; however, significant differences in the NDVI index were detected during ripening (p > 0.05). For yield estimation, feature selection was performed using principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) to increase model efficiency and interpretability. Among the regression algorithms tested, support vector regression (SVR) demonstrated the highest predictive accuracy (R² = 0.81) for the Bellavista variety at the maximum tillering stage. Furthermore, the Valor variety presented the highest grain yield (13.70 t/ha). These results underscore the potential of integrating multisource data with machine learning techniques for high-resolution phenological monitoring and varietal performance assessment.
dc.description.sponsorshipThis study was funded by Investment Project with CUI No. 2472675: “Mejoramiento de los servicios de investigación y transferencia de tecnología agraria en la estación agraria experimental Baños del Inca en la localidad de Baños del Inca del distrito de Baños del Inca - provincia de Cajamarca - departamento de Cajamarca”, Dirección de Servicios Estratégicos Agrarios (DSEA), Instituto Nacional de Innovación Agraria (INIA). The authors thank Teiser Sanchez, Pedro Torres, Larry García and Javier Yovera for their help in data collection
dc.formatapplication/pdf
dc.identifier.citationFernandez-Jibaja, J. A., Atalaya-Marin, N., Álvarez-Robledo, Y. A., Taboada-Mitma, V. H., Cruz-Luis, J., Tineo, D., Goñas, M., & Gómez-Fernández, D. (2025). Integration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.). Smart Agricultural Technology , 101203. https://doi.org/10.1016/j.atech.2025.101203
dc.identifier.doihttps://doi.org/10.1016/j.atech.2025.101203
dc.identifier.issn2772-3755
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2811
dc.language.isoeng
dc.publisherElsevier
dc.publisher.countryNL
dc.relation.ispartofurn:issn:2772-3755
dc.relation.ispartofseriesSmart Agricultural Technology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectagronomic traits
dc.subjectcrop monitoring
dc.subjectmeteorological information
dc.subjectremote sensing
dc.subjectrice yield estimation
dc.subjectcaracterísticas agronómicas
dc.subjectmonitoreo de cultivos
dc.subjectinformación meteorológica
dc.subjectteledetección
dc.subjectestimación del rendimiento del arroz
dc.subject.agrovocagronomic characters; Característica agronómica; meteorological data; datos meteorológicos; oryza sativa; arroz; precision agricultura; agricultura de precisión; vegetation index; índice de vegetación.
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.06
dc.titleIntegration of agronomic information, vegetation indices (VIs), and meteorological data for phenological monitoring and yield estimation of rice (Oryza sativa L.)
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Fernandez_et-al_2025_integration_phenological.pdf
Tamaño:
10.87 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA