Rice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield

dc.contributor.authorGoigochea Pinchi, Diego
dc.contributor.authorVega Herrera, Sergio Sebastian
dc.contributor.authorTorres Chavez, Edson Esmith
dc.contributor.authorArchentti Reategui, Fernando
dc.contributor.authorBarrera Torres, Ciceron
dc.contributor.authorDominguez Yap, Percy Luis
dc.contributor.authorYsuiza Perez, Alfredo
dc.contributor.authorPerez Tello, Monica
dc.contributor.authorRios Rios, Raúl
dc.contributor.authorSantillan Gonzáles, Manuel Dante
dc.contributor.authorGanoza Roncal, Jorge Juan
dc.contributor.authorRuiz Reyes, Jose Guillermo
dc.contributor.authorAgurto Piñarreta, Alex Ivan
dc.date.accessioned2025-10-13T20:17:11Z
dc.date.available2025-10-13T20:17:11Z
dc.date.issued2025-09-26
dc.description.abstractRice is a globally important crop and a staple in the diet of a large part of the world's population. This underscores the need for hybridization and improvement of rice genotypes to meet food demand in an environmentally sustainable manner. Geographic Information Systems (GIS) have proven to be valuable tools for the morphometric phenotyping of different genotypes. In this study, seven different rice genotypes were evaluated with the objective of selecting those with high yield. Multispectral imagery was used to develop prediction models based on supervised learning algorithms, including Linear Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Elastic Net (EN), and Neural Networks (NN). The variables studied were plant height, number of panicles, number of tillers, and yield. The results showed the following performances: R² = 0.44 for plant height using Random Forest, R² = 0.92 for number of panicles with Neural Networks, R² = 0.44 for number of tillers with SVM, and R² = 0.31 for yield with SVM. This technology significantly supports traditional selection methodologies for hybridization and improvement by providing a spatial approach that enhances and facilitates selection criteria.
dc.formatapplication/pdf
dc.identifier.doihttp://doi.org/10.17268/agroind.sci.2025.03.05
dc.identifier.issn2226-2989
dc.identifier.urihttp://hdl.handle.net/20.500.12955/2896
dc.language.isoeng
dc.publisher.countryPE
dc.relation.ispartofurn:issn:2226-2989
dc.relation.ispartofseriesUniversidad Nacional de Trujillo - Escuela de Ingeniería Agroindustrial
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/nc/4.0/
dc.sourceInstituto Nacional de Innovación Agraria
dc.source.uriRepositorio Institucional - INIA
dc.subjectOryza sativa
dc.subjectTeledetección
dc.subjectImágenes multispectrales
dc.subjectAprendizaje automático
dc.subjectMejora genética
dc.subjectRemote sensing
dc.subjectMultispectral imaging
dc.subjectMachine learning
dc.subjectGenetic improvement.
dc.subject.agrovocArroz; Rice; Vehículos aéreos no tripulados; Unmanned aerial vehicles; Fenotipado; Phenotyping; Rendimiento de cultivos; Crop yield; Agricultura de precisión; Precision agriculture
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#4.01.01
dc.titleRice phenotyping using unmanned aerial vehicles: Analyzing morphological characteristics and yield
dc.title.alternativeFenotipado del arroz mediante vehículos aéreos no tripulados: Análisis de características morfológicas y rendimiento
dc.typeinfo:eu-repo/semantics/article

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Goigochea_et-al_2025_rice_phenotyping.pdf
Tamaño:
900.91 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.75 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Sede Central: Av. La Molina 1981 - La Molina. Lima. Perú - 15024

Central telefónica (511) 240-2100 / 240-2350

FacebookLa ReferenciaEurocris
Correo: repositorio@inia.gob.pe

© Instituto Nacional de Innovación Agraria - INIA